Fiche d'exercices n°9

Exercice 1 : Résoudre les systèmes suivants en utilisant la méthode de Gauss :

$$\begin{cases} x + 3y - 2z = 0 \\ x - 8y + 8z = 0 \\ 3x - 2y + 4z = 0 \end{cases} \begin{cases} x + 2y - 3z = 0 \\ 2x + 5y + 3z = 0 \\ 3x - y - 4z = 0 \end{cases}$$

Exercice 2 : Résoudre les systèmes suivants en utilisant la méthode de Gauss :

$$\begin{cases} 3x & + & y & = & 0 \\ 6x & + & 2y & + & z & = & 2 \\ 9x & + & 3y & + & 7z & = & 14 \end{cases} \begin{cases} x & - & 3y & + & z & = & 1 \\ 2x & + & y & - & z & = & -1 \\ x & + & 11y & - & 5z & = & 5 \end{cases}$$

Exercice 3 : Soit a un nombre réel. On considère le système suivant, d'inconnues x, y et z:

$$\begin{cases} x + y + 2z = 2 \\ y + z = 1 \\ ax - a^2y + (a-1)z = 0 \end{cases}$$

- 1. Mettre le système sous forme semi-réduite.
- 2. Montrer que si $a \neq 1$ et si $a \neq -1$ alors le système possède une solution unique. La préciser.
- 3. Que se passe-t-il si a = 1 ou si a = -1?

Exercice 4 : Soient deux nombres complexes a et b. Discuter, suivant leurs valeurs, l'existence de solutions pour chacun des systèmes suivants. Lorsqu'une ou des solutions existent, préciser leur(s) valeur(s) (en fonction de a et b).

$$\begin{cases} ax + y + z = 1 \\ x + ay + z = b \\ x + y + az = 1 \end{cases} \qquad \begin{cases} x + y + z = 1 \\ x - y + az = b \\ x + y + a^2z = b^2 \end{cases}$$

Exercice 5 : Soient x_1, x_2, x_3 trois réels distincts, et y_1, y_2, y_3 trois réels quelconques. Montrer qu'il existe un unique polynôme P de degré 2 tel que $P(x_i) = y_i$ pour i = 1, 2, 3. Exercice 6: On considère l'application suivante :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x, y, z) \longmapsto (x + y + 2z, x + 2y - 3z, x + 3y - 8z)$.

- 1- Résoudre f(x, y, z) = (0, 0, 0). L'application f est-elle injective?
- 2- Soit $(a,b,c) \in \mathbb{R}^3$, résoudre en fonction de (a,b,c), l'équation f(x,y,z) = (a,b,c). L'application est-elle surjective?
- 3- Décrire $\operatorname{Im}(f)$.

Exercice 7: Écrire les matrices à 3 lignes et 4 colonnes, $A = (a_{ij})$ et $B = (b_{ij})$, telles que:

- $a_{ij} = i + j$ et $b_{ij} = (-1)^{i+j}$. $a_{ij} = ij$ et $b_{ij} = \frac{1}{i+j}$.

Exercice 8 : Calculer la matrice A + 3B - 2C pour

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 2 & 3 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 7 & -1 & 7 \\ 1 & 3 & -3 \end{pmatrix}.$$

Exercice 9:

1. Trouver toutes les matrices A ayant 2 lignes et 2 colonnes telles que :

$$A \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A.$$

2. Trouver toutes les matrices A (ayant 2 lignes et 2 colonnes) telles que :

$$A \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} A.$$

3. En déduire toutes les matrices A (ayant 2 lignes et 2 colonnes) telles que : pour toute matrice B (ayant 2 lignes et 2 colonnes), on ait : AB = BA.

Exercice 10: Calculer A^2 , A^3 , A^n pour tout entier naturel $n \ge 1$ dans les deux cas suivants:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 11 : On considère les matrices A et I_2 définies par : $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $I_2 =$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Montrer que l'on a la relation :

$$A^{2} - (a+d)A + (ad - bc)I_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

En supposant que $ad-bc \neq 0$, en déduire l'inverse de A. Que se passe-t-il si ad-bc=0?

Exercice 12: Pour les nombres, nous connaissons la formule $(a + b)^2 = a^2 + 2ab + b^2$. Montrer en prenant par exemple

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

que cette formule est fausse en général pour les matrices. Quelle est la bonne formule? Montrer que AB = BA si et seulement si $(A + B)^2 = A^2 + 2AB + B^2$.

Exercice 13 : Calculer, si cela est possible, les inverses des matrices suivantes (avec la méthode du Pivot de Gauss) :

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \begin{pmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{pmatrix} \quad \begin{pmatrix} 9 & 7 & 6 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercice 14: On considère les matrices suivantes:

$$A = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}.$$

- 1. Calculer P^{-1} puis $D = P^{-1}AP$.
- 2. Soit n un entier positif non nul. Déterminer \mathbb{D}^n .
- 3. Montrer que $A^n = PD^nP^{-1}$ et déduire A^n sous forme explicite.

Exercice 15 : On considère les matrices suivantes :

$$A = \begin{pmatrix} 2 & 2 & -2 \\ 3 & 1 & 3 \\ -1 & 1 & 3 \end{pmatrix} \quad \text{et} \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. Calculer A^2 .
- 2. Déterminer des réels λ et μ tels que $A^2 = \lambda A + \mu I_3$.
- 3. En déduire que A est inversible et déterminer A^{-1} .

Exercice 16 : On considère la matrice suivante :

$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}.$$

1. Montrer que si $a \neq 1$ et $a \neq -2$, alors A est inversible et déterminer son inverse.

2. Écrire le système suivant :

$$\begin{cases} ax + y + z = 1 \\ x + ay + z = b \\ x + y + az = 1 \end{cases}$$

sous forme matricielle. Déduire de la question précédente que si $a \neq 1$ et $a \neq -2$, ce système possède une solution unique et la déterminer.

Exercice 17: On considère l'application suivante :

$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$$

 $(x, y, z) \longmapsto (x + 2y + 3z + 4t, 2x + 3y + 4z + 5t, 3x + 4y + 5z + 6t)$.

- 1- Soit $(a,b,c) \in \mathbb{R}^3$, écrire le système linéaire correspondant à f(x,y,z,t) = (a,b,c).
- 2- Écrire le système linéaire précédent sous forme matricielle.
- 3- Résoudre le système.
- 4- En déduire une condition nécessaire et suffisante pour que (a,b,c) soit dans l'image de f.
- 5- L'application f est-elle surjective? Injective?

Exercice 18:

1- Résoudre le système linéaire suivant dont les inconnues sont x, y et z:

$$\begin{cases} x - y + z = a \\ y - 2z = b \\ x + y + 2z = c \end{cases}$$

2- Calculer l'inverse de la matrice :

$$\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
1 & 1 & 2
\end{array}\right)$$

Exercice 19 : Écrire la matrices à 3 lignes et 3 colonnes, $A = (a_{ij})$ avec $a_{ij} = \begin{pmatrix} i \\ j \end{pmatrix}$. Calculer l'inverse de la matrice A.

Exercice 20 : On considère la matrice A suivante :

$$A = \left(\begin{array}{rrr} 0 & 0 & 1\\ 0 & 1 & 0\\ -1 & 0 & 2 \end{array}\right)$$

Soit P la matrice :

$$P = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

- 1- Calculer P^{-1} puis $B = P^{-1}AP$.
- 2- Donner une formule pour B^n , $n \in \mathbb{N}$.
- 3- En déduire l'expression de A^n pour $n \in \mathbb{N}$.