Null controllability of the Grushin equation : non-rectangular control region

M. Duprez¹, A. Koenig²,

¹Laboratoire Jacques-Louis Lions, Paris ²Laboratoire Jean-Alexandre Dieudonné, Nice

Séminaire d'analyse Institut de Mathématiques de Bordeaux 18/10/18

- Controllability of the heat equation
- **2** Controllability of the Grushin equation
- Omments and open problems

Notions of controllability

Problematic

We search u, called **control**, such that the solution f to system

$$\begin{cases} \partial_t f = \mathcal{A}(f) + \mathcal{B}(u) \\ f(0) = f^0 \end{cases}$$

satisfies :

• f near a given target at time T

$$\forall \varepsilon > 0, f^0, f^1, \ \exists \ \boldsymbol{u} \quad \text{s.t.} \quad d(f(T), f^1) \leqslant \varepsilon.$$

> Approximate controllability

• f reach a target at time T

$$\forall f^0, f^1, \exists u \text{ s.t. } f(T) = f^1.$$

> Exact controllability

• f reach a target at time T

$$\forall f^0, f^1, \exists u \text{ s.t. } f(T) = 0.$$

> Null controllability

Internal null controllability of the heat equation

Let Ω be an open bounded set of \mathbb{R}^n , ω an non-empty open set of Ω and T > 0.

Consider the heat equation

<

$$\begin{cases} \partial_t f - \Delta f = \mathbf{1}_{\omega} u, \\ f_{|\partial\Omega} = 0, \\ f(0) = f^0. \end{cases}$$
(1)

Theorem (Internal null controllability of the heat equation)

The heat equation (1) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that solution f to (1) satisfies f(T) = 0.

 \rightarrow Fattorini-Russell 71' (dim 1) : moment method

→ Fursikov-Imanuvilov / Lebeau-Robbiano 95' : Carleman inequality / spectral inequality

Remark

- No minimal time of controllability
- No geometrical condition on ω

Let Ω be an open bounded set of \mathbb{R}^n , γ an non-empty open set of $\partial \Omega$ and T > 0.

$$\begin{cases} \partial_t f - \Delta f = 0, \\ f_{|\partial\Omega} = \mathbf{1}_{\gamma} u, \\ f(0) = f^0. \end{cases}$$
(2)

Ω

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \gamma)$ such that solution f to (2) satisfies f(T) = 0.

Sketch of proof : the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- \tilde{f} := solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}_{|\gamma}$

Remark

Let Ω be an open bounded set of \mathbb{R}^n , γ an non-empty open set of $\partial\Omega$ and T > 0.

$$\begin{cases} \partial_t f - \Delta f = 0, \\ f_{|\partial\Omega} = \mathbf{1}_{\gamma} u, \\ f(0) = f^0. \end{cases}$$
(2)

Ω

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \gamma)$ such that solution f to (2) satisfies f(T) = 0.

Sketch of proof : the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- \tilde{f} := solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}_{|\gamma}$

Remark

Let Ω be an open bounded set of \mathbb{R}^n , γ an non-empty open set of $\partial\Omega$ and T > 0.

$$\begin{cases} \partial_t f - \Delta f = 0, \\ f_{|\partial\Omega} = \mathbf{1}_{\gamma} u, \\ f(0) = f^0. \end{cases}$$
(2)

Ω

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \gamma)$ such that solution f to (2) satisfies f(T) = 0.

Sketch of proof : the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- \tilde{f} := solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}_{|\gamma}$

Remark

Let Ω be an open bounded set of \mathbb{R}^n , γ an non-empty open set of $\partial\Omega$ and T > 0.

$$\begin{cases} \partial_t f - \Delta f = 0, \\ f_{|\partial\Omega} = \mathbf{1}_{\gamma} u, \\ f(0) = f^0. \end{cases}$$
(2)

Ω

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \gamma)$ such that solution f to (2) satisfies f(T) = 0.

Sketch of proof : the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\bullet \ \omega \subset \tilde{\Omega}$
- \tilde{f} := solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}_{|\gamma}$

Remark

Let Ω be an open bounded set of \mathbb{R}^n , γ an non-empty open set of $\partial\Omega$ and T > 0.

$$\begin{cases} \partial_t f - \Delta f = 0, \\ f_{|\partial\Omega} = \mathbf{1}_{\gamma} u, \\ f(0) = f^0. \end{cases}$$
(2)

Ω

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \gamma)$ such that solution f to (2) satisfies f(T) = 0.

Sketch of proof : the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\bullet \ \omega \subset \tilde{\Omega}$
- \tilde{f} := solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}_{|\gamma}$

Remark

Let Ω be an open bounded set of \mathbb{R}^n , γ an non-empty open set of $\partial\Omega$ and T > 0.

$$\begin{cases} \partial_t f - \Delta f = 0, \\ f_{|\partial\Omega} = \mathbf{1}_{\gamma} u, \\ f(0) = f^0. \end{cases}$$
(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, *i.e.* for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \gamma)$ such that solution f to (2) satisfies f(T) = 0.

Sketch of proof : the fictitious control method

• Extension $\tilde{\Omega}$ of Ω through γ

•
$$\omega \subset \tilde{\Omega}$$

- \tilde{f} := solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}_{|\gamma}$

Remark

• Equivalence between internal and boundary null controllability

Ω

Duality

Denote by $f(t; f^0, u)$ the solution to

$$\begin{cases} \partial_t f - \Delta f = \mathbf{1}_{\omega} u, \\ f_{|\partial\Omega} = 0, \\ f(0) = f^0. \end{cases}$$
(1)

Let $Q_T := \Omega \times (0,T)$ and

$$\begin{array}{rccccccc} F_T & : & L^2(\Omega) & \to & L^2(\Omega), & & G_T & : & L^2(Q_T) & \to & L^2(\Omega), \\ & & f^0 & \mapsto & f(T; f^0, 0) & & u & \mapsto & f(T; 0, u) \end{array}$$

One has :

Null controllability of (1)
$$\Rightarrow \quad \forall f^{0}, \exists u : F_{T}(f^{0}) + G_{T}(u) = 0$$
$$\Rightarrow \qquad \operatorname{Im}(F_{T}) \subset \operatorname{Im}(G_{T})$$
$$\Rightarrow \qquad \|F_{T}^{*}\varphi^{T}\| \leq C \|G_{T}^{*}\varphi^{T}\|, \forall \varphi^{T}$$

Approximate controllability of (1)

1)
$$\Leftrightarrow \overline{\operatorname{Im}(G_T)} = L^2(\Omega)$$

 $\Leftrightarrow \left(G_T^*\varphi^T = 0 \Rightarrow \varphi^T = 0\right), \forall \varphi^T$

Duality

$$\begin{cases} \partial_t f - \Delta f = \mathbf{1}_{\omega} u, & \\ f_{|\partial\Omega} = 0, & (1) \\ f(0) = f^0. & \end{cases} \quad \begin{pmatrix} \partial_t \varphi = \Delta \varphi & \text{in } Q_T, \\ \varphi = 0 & \text{on } \Sigma_T, \\ \varphi(T) = \varphi^T & \text{in } \Omega. \end{cases}$$

Proposition (see Coron's book 2007 or Tucsnak-Weiss's book 2009)

System (1) is null controllable on (0, T), if and only if there exists $C_{obs} > 0$ such that for all $\varphi^T \in L^2(\Omega)$

$$\|\varphi(0)\|_{L^{2}(\Omega)} \leq C_{obs} \int_{0}^{T} \|\varphi\|_{L^{2}(\omega)} dt$$

with φ the solution to the dual system.

System (1) is approx. controllable at time T, if and only if for all $\varphi^T \in L^2(\Omega)$ the solution to the dual system satisfies

$$\varphi = 0 \text{ in } \omega \times (0,T) \Rightarrow \varphi = 0 \text{ in } Q_T.$$

Approximate controllability of the heat equation

$$\begin{cases} \partial_t f - \Delta f = \mathbf{1}_{\omega} u & \text{in } Q_T, \\ f_{|\partial\Omega} = 0 & \text{on } \Sigma_T, \\ f(0) = f^0 & \text{in } \Omega. \end{cases} \begin{cases} -\partial_t \varphi = \Delta \varphi & \text{in } Q_T, \\ \varphi = 0 & \text{on } \Sigma_T, \\ \varphi(T) = \varphi^T & \text{in } \Omega. \end{cases}$$

Since (1) is null controllable,

$$\|\varphi(0)\|_{L^{2}(\Omega)} \leqslant C_{obs} \int_{0}^{T} \|\varphi\|_{L^{2}(\omega)} \mathrm{d}t$$

Hence

$$\begin{split} \varphi &= 0 \text{ in } \omega \times (0,T) \quad \Rightarrow \qquad \varphi(0) = 0 \text{ in } \Omega \\ \Rightarrow \qquad \varphi &= 0 \text{ in } \Omega \times (0,T) \end{split}$$

Corollary (Approximate controllability of the heat equation)

The heat equation (1) is **approx. controllable** at time T, i.e. for each $f^0, f^1 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that solution f to (1) satisfies $||f(T) - f^1|| \leq \varepsilon$.

The heat equation

Conclusion

- Non exact controllability
 - Regularizing effect of the heat equation
- Null controllability
 - > Equivalence of int. and bound. null contr. thanks to fictitious control method
- Approximate controllability
 - Come from the null controllability thanks to the duality

Question

How a modification of $-\Delta$ can influx these notions of controllability ?

The Grushin equation

Consider

4

$$\begin{cases} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = \mathbb{1}_{\omega} u & t \in [0, T], (x, y) \in \Omega := (-1, 1) \times (0, 1), \\ f(t, x, y) = 0 & t \in [0, T], (x, y) \in \partial\Omega, \\ f(0, x, y) = f^0(x, y) & (x, y) \in \Omega, \end{cases}$$

a) minimal time of internal null controllability $T^* = a^2/2$

Beauchard-Miller-Morancey 2015

b) minimal time of internal null controllability $T^* > a^2/2$

Beauchard-Cannarsa-Guglielmi 2014

minimal time of boundary null controllability $T^* = a^2/2$

➤ Beauchard-Dardé-Ervedoza 2018

c) No internal null controllability

➤ Koenig 2017

Positive result

Theorem (D.-Koenig)

Assume that there exist $\varepsilon > 0$ and $\gamma \in C^0([0,1],\Omega)$ with $\gamma(0) \in (-1,1) \times \{0\}$ and $\gamma(1) \in (-1,1) \times \{\pi\}$ such that

$$\boldsymbol{\omega}_{\mathbf{0}} \coloneqq \{ z \in \Omega, \operatorname{distance}(z, \operatorname{Range}(\gamma)) < \varepsilon \} \subset \boldsymbol{\omega},$$

then the Grushin equation is null-controllable in any time $T > a^2/2$, where

$$a \coloneqq \sup_{(x,y)\in\Omega\setminus\omega_0} \{|x|: \exists x_0 \in (-1,1), |x| < |x_0|, \operatorname{sgn}(x) = \operatorname{sgn}(x_0), (x_0,y) \in \omega_0\}.$$

Positive result : sketch of proof

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

$$\begin{cases} \begin{array}{ll} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{left}} = \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} & \text{on } [0, T] \times \Omega \\ (\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{right}} = \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} & \text{on } [0, T] \times \Omega \\ f_{\text{left}}(0) = f_{\text{right}}(0) = f_0, \ f_{\text{left}}(T) = f_{\text{right}}(T) = 0 & \text{on } \Omega \end{array}$$

There exists a function $\theta \in C^{\infty}(\Omega)$ such that

 $\theta = 0 \text{ on } \omega_{\text{left}} \setminus \omega_0, \ \theta = 1 \text{ on } \omega_{\text{right}} \setminus \omega_0, \ \sup(\nabla \theta) \subset \omega_0.$ We remark that $f := \theta f_{\text{left}} + (1 - \theta) f_{\text{right}}$, solves

$$\begin{cases} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f = 1_{\omega_0} u & \text{on } [0, T] \times \Omega, \\ f(0) = f_0, \ f(T) = 0 & \text{on } \Omega, \end{cases}$$

where $u := \theta \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} + (1 - \theta) \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} + (f_{\text{right}} - f_{\text{left}}) (\partial_x^2 + x^2 \partial_y^2) \theta$ $+ 2\partial_x (f_{\text{right}} - f_{\text{left}}) \partial_x \theta + 2x^2 \partial_y (f_{\text{right}} - f_{\text{left}}) \partial_y \theta.$

Positive result : sketch of proof

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

$$\begin{cases} \begin{array}{ll} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{left}} = \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} & \text{on } [0, T] \times \Omega \\ (\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{right}} = \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} & \text{on } [0, T] \times \Omega \\ f_{\text{left}}(0) = f_{\text{right}}(0) = f_0, \ f_{\text{left}}(T) = f_{\text{right}}(T) = 0 & \text{on } \Omega \end{array}$$

There exists a function $\theta \in C^{\infty}(\overline{\Omega})$ such that

 $\theta = 0$ on $\omega_{\text{left}} \setminus \omega_0$, $\theta = 1$ on $\omega_{\text{right}} \setminus \omega_0$, $\operatorname{supp}(\nabla \theta) \subset \omega_0$. rk that $f := \theta \log + (1 - \theta) \operatorname{free}_{\alpha}$, solves

$$\begin{cases} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f = 1_{\omega_0} u & \text{on } [0, T] \times \Omega, \\ f(0) = f_0, \ f(T) = 0 & \text{on } \Omega, \end{cases}$$

where $u := \theta \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} + (1 - \theta) \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} + (f_{\text{right}} - f_{\text{left}}) (\partial_x^2 + x^2 \partial_y^2) \theta$ $+ 2\partial_x (f_{\text{right}} - f_{\text{left}}) \partial_x \theta + 2x^2 \partial_y (f_{\text{right}} - f_{\text{left}}) \partial_y \theta.$

Positive result : sketch of proof

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

$$\begin{cases} \begin{array}{ll} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{left}} = \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} & \text{on } [0, T] \times \Omega \\ (\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{right}} = \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} & \text{on } [0, T] \times \Omega \\ f_{\text{left}}(0) = f_{\text{right}}(0) = f_0, \ f_{\text{left}}(T) = f_{\text{right}}(T) = 0 & \text{on } \Omega \end{array}$$

There exists a function $\theta \in C^{\infty}(\overline{\Omega})$ such that

 $\theta = 0$ on $\omega_{\text{left}} \setminus \omega_0$, $\theta = 1$ on $\omega_{\text{right}} \setminus \omega_0$, $\operatorname{supp}(\nabla \theta) \subset \omega_0$. We remark that $f := \theta f_{\text{left}} + (1 - \theta) f_{\text{right}}$, solves

$$\begin{cases} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f = 1_{\omega_0} u & \text{on } [0, T] \times \Omega, \\ f(0) = f_0, \ f(T) = 0 & \text{on } \Omega, \end{cases}$$

where $u := \theta \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} + (1 - \theta) \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} + (f_{\text{right}} - f_{\text{left}}) (\partial_x^2 + x^2 \partial_y^2) \theta$ $+ 2\partial_x (f_{\text{right}} - f_{\text{left}}) \partial_x \theta + 2x^2 \partial_y (f_{\text{right}} - f_{\text{left}}) \partial_y \theta.$

Theorem (D.-Koenig)

If for some $y_0 \in (0, \pi)$ and a > 0 one has

$$\{(x, y_0), -a < x < a\} \cap \overline{\omega} = \emptyset,$$

then the Grushin equation is not null controllable in time $T < a^2/2$.

Remark : Since the Grushin equation is not null-controllable when ω is the complement of a horizontal strip [Koenig 2017], our Assumption is quasi optimal.

Proposition (see Coron's book 2007 or Tucsnak-Weiss's book 2009)

The Grushin equation is **null controllability** if, and only if, there exists C > 0 such that for all f_0 in $L^2(\Omega)$, the solution f to

$$\begin{cases} (\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = 0 & t \in [0, T], (x, y) \in \Omega, \\ f(t, x, y) = 0 & t \in [0, T], (x, y) \in \partial\Omega, \\ f(0, x, y) = f_0(x, y) & (x, y) \in \Omega, \end{cases}$$

satisfies

$$\int_{\Omega} \left| f(T, x, y) \right|^2 \mathrm{d}x \, \mathrm{d}y \le C \int_{[0, T] \times \omega} \left| f(t, x, y) \right|^2 \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}y.$$

Assume that $\Omega = \mathbb{R} \times \mathbb{T}$.

For n > 0,

$$e^{-nx^2/2}$$
 is the first eigenfunction of $-\partial_x^2 + (nx)^2$

and with associated eigenvalue n.

Then

$$e^{-nx^2/2}e^{iny}$$
 is an eigenfunction of $-\partial_x^2 - x^2\partial_y^2$

and with eigenvalue n.

For the functions

$$f(t,x,y) = \sum a_n e^{-nt + iny - nx^2/2},$$

the observability inequality reads :

$$\sum \left(\frac{2\pi}{n}\right)^{1/2} |a_n|^2 e^{-2nT} \le C \int_{[0,T] \times \omega} \left| \sum a_n e^{-nt + iny - nx^2/2} \right|^2 dt \, dx \, dy$$

Assume that $\Omega = \mathbb{R} \times \mathbb{T}$.

For n > 0,

$$e^{-nx^2/2}$$
 is the first eigenfunction of $-\partial_x^2 + (nx)^2$

and with associated eigenvalue n.

Then

$$e^{-nx^2/2}e^{iny}$$
 is an eigenfunction of $-\partial_x^2 - x^2\partial_y^2$

and with eigenvalue n.

For the functions

$$f(t, x, y) = \sum a_n e^{-nt + iny - nx^2/2},$$

the observability inequality reads :

$$\sum \left(\frac{2\pi}{n}\right)^{1/2} |a_n|^2 e^{-2nT} \le C \int_{[0,T] \times \omega} \left| \sum a_n e^{-nt + iny - nx^2/2} \right|^2 dt \, dx \, dy$$

Consider the change of variable $z_x(t, y) := e^{-t+iy-x^2/2}$ and denote $\mathcal{D}_x := \{e^{-x^2/2-t+iy}, 0 < t < T, (x, y) \in \omega\}$:

$$\int_{[0,T]\times\omega} \left| \sum a_n e^{iny - nt - nx^2/2} \right|^2 dt \, dx \, dy = \int_{-1}^1 \int_{\mathcal{D}_x} \left| \sum_{n>0} a_n z^{n-1} \right|^2 d\lambda(z) \, dx.$$

Thus

$$\int_{D(0,e^{-T})} \left| \sum_{n>0} a_n z^{n-1} \right|^2 d\lambda(z) \le C \left| \sum_{n>0} a_n z^{n-1} \right|_{L^{\infty}(K)}.$$

$$\begin{split} \int_{D(0,e^{-T})} \Big| \sum_{n>0} a_n z^{n-1} \Big|^2 \, \mathrm{d}\lambda(z) &\leq C \Big| \sum_{n>0} a_n z^{n-1} \Big|^2_{L^{\infty}(K)}. \end{split}$$

Let $z_0 \in D(0,e^{-T}) \setminus \overline{K}$
and
 $f: z \in \mathbb{C} \setminus z_0[1,+\infty) \mapsto (z-z_0)^{-1}.$
 $D(0,e^{-T})$

Proposition (Runge's theorem)

and f:z

Let K be a connected and simply connected open subset of \mathbb{C} , and let f be a holomorphic function on K. There exists a sequence (p_k) of polynomials that converges uniformly on every compact subsets of K to f.

Then, the family p_k is a counter example to the inequality on entire polynomials.

Assume now that $\Omega = (-1, 1) \times (0, 1)$.

For n > 0, let us note

$$v_n$$
 the first eigenfunction of $-\partial_x^2 + (nx)^2$

with Dirichlet boundary condition on (-1, 1), and with associated eigenvalue λ_n . Then

 $v_n(x)\sin(ny)$ is an eigenfunction of $-\partial_x^2 - x^2\partial_y^2$

with Dirichlet boundary condition on $\partial\Omega$, and with eigenvalue λ_n . For the functions

$$f(t, x, y) = \sum a_n v_n(x) e^{-\lambda_n t} \sin(ny),$$

the observability inequality reads :

$$\sum |a_n|^2 |v_n|_{L^2}^2 \mathrm{e}^{-2\lambda_n T} \le C \int_{[0,T] \times \omega} \left| \sum a_n v_n(x) \mathrm{e}^{-\lambda_n t} \sin(ny) \right|^2 \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}y$$

Let us estimate the right hand-side of this inequality

 \bullet Noting $\tilde{\omega}=\omega\cup\{(x,-y),(x,y)\in\omega\},$ this implies

$$\int_{[0,T]\times\omega} \left| \sum a_n v_n(x) \mathrm{e}^{-\lambda_n t} \sin(ny) \right|^2 \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}y$$
$$\leq C \int_{[0,T]\times\tilde{\omega}} \left| \sum a_n v_n(x) \mathrm{e}^{\mathrm{i}ny - \lambda_n t} \right|^2 \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}y.$$

• Consider the change of variable

$$\begin{cases} \lambda_n = n + \rho_n \\ v_n(x) = e^{-(1-\varepsilon)nx^2/2} w_n(x) \\ z_x(t,y) = e^{-t + iy - (1-\varepsilon)x^2/2} \end{cases}$$

Then

$$\int_{[0,T]\times\tilde{\omega}} \left|\sum a_n v_n(x) \mathrm{e}^{\mathrm{i}ny-\lambda_n t}\right|^2 \mathrm{d}t \,\mathrm{d}x \,\mathrm{d}y$$
$$= \int_{[0,T]\times\tilde{\omega}} \left|\sum_{n>0} a_n w_n(x) \mathrm{e}^{-\rho_n t} z_x(t,y)^n\right|^2 \mathrm{d}t \,\mathrm{d}x \,\mathrm{d}y.$$

Remark (lemma)

The eigenfunction v_n of $-\partial_x^2 + (nx)^2$ for the eigenvalue is closed to the eigenfunction of same operator on \mathbb{R} for the eigenvalue n, *i.e.*

$$v_n$$
 closed to $\left(\frac{n}{2\pi}\right)^{1/4} e^{-nx^2/2}$ and λ_n closed to n .

• Since ρ_n , w_n are closed to 0, 1,

$$\int_{-1}^{1} \left| \sum_{n > N} a_n w_n(x) e^{-\rho_n t} z^{n-1} \right|_{L^{\infty}(\mathcal{D}_x)}^2 \mathrm{d}x \le C \int_{-1}^{1} \left| \sum_{n > N} a_n z^{n-1} \right|_{L^{\infty}(U)}^2 \mathrm{d}x$$

Thus

Proposition (Runge's theorem)

Let U be a connected and simply connected open subset of \mathbb{C} , and let f be a holomorphic function on U. There exists a sequence (\tilde{p}_k) of polynomials that converges uniformly on every compact subsets of U to f.

Then, the family $p_k(z) := z^{N+1} \tilde{p}_k(z)$ is a counter example to the inequality on entire polynomials.

Minimal time

Corollary ($T_0 = a^2/2$)

Assume that there exist $\varepsilon > 0$ and $\gamma \in C^0([0,1], \Omega)$ with $\gamma(0) \in (-1,1) \times \{0\}$ and $\gamma(1) \in (-1,1) \times \{\pi\}$ such that $\omega_0 := \{z \in \Omega, \text{distance}(z, \text{Range}(\gamma)) < \varepsilon\} \subset \omega$. Assume that some $y_0 \in (0,\pi), \{(x,y_0), -a < x < a\}$ is disjoint from $\overline{\omega}$ where

 $a := \sup_{(x,y)\in\Omega\setminus\omega_0} \{ |x| : \exists x_0 \in (-1,1), |x| < |x_0|, \operatorname{sgn}(x) = \operatorname{sgn}(x_0), (x_0,y) \in \omega_0 \}.$

One has

- If $T > a^2/2$, then the Grushin equation is null controllable in time T.
- If $T < a^2/2$, then the Grushin equation is not null controllable in time T.

Open problems

We can't go from the bottom boundary to the top boundary while staying inside ω .

$$T^* \geqslant a^2/2$$

A cave. $T^* \in [a^2/2, b^2/2]$

The Grushin equation

Conclusion

- Non exact controllability
 - Regularizing effect of the heat equation
- Approximate controllability
 - ➤ Beauchard-Cannarsa-Guglielmi 2014
- Minimal time null controllability
 - > Detailed description of the influence of the control region

Other example : Parabolic coupled systems

Consider

$$\begin{cases} \partial_t f_1 - \Delta f_1 + q(x) f_2 = 0, \\ \partial_t f_2 - \Delta f_2 = \mathbf{1}_{\omega} u, \\ f_{\mid \partial \Omega} = 0, \ f(0) = f^0. \end{cases}$$
(1)

System (1) is approx. contr. if and only if

$$I_k(q) = \int_0^{\pi} q(x)\phi_k(x)^2 dx \neq 0, \ \forall k > 0.$$
⁽²⁾

where $\phi_k := \sqrt{2/\pi} \sin(kx)$.

If (2) is satisfied and $\text{Supp}(q) \cap \omega = \emptyset$, then the minimal time of null controllability of system (1) is given by

$$T^* = \limsup \frac{-\log |I_k(q)|}{k^2}.$$

Ammar Khodja-Benabdallah-Gonzalez-Burgos-De Teresa, 2015

Question

Is there a **general theory** to determine the minimal time of null controllability for parabolic systems ?

$$\partial_t f + \mathcal{A}f = \mathcal{B}u$$

Other example : Parabolic coupled systems

Consider

$$\begin{cases} \partial_t f_1 - \Delta f_1 + q(x) f_2 = 0, \\ \partial_t f_2 - \Delta f_2 = \mathbf{1}_{\omega} u, \\ f_{|\partial\Omega} = 0, \ f(0) = f^0. \end{cases}$$
(1)

System (1) is approx. contr. if and only if

4

$$I_k(q) = \int_0^{\pi} q(x)\phi_k(x)^2 dx \neq 0, \ \forall k > 0.$$
 (2)

where $\phi_k := \sqrt{2/\pi} \sin(kx)$.

If (2) is satisfied and $\text{Supp}(q) \cap \omega = \emptyset$, then the minimal time of null controllability of system (1) is given by

$$T^* = \limsup \frac{-\log |I_k(q)|}{k^2}.$$

Ammar Khodja-Benabdallah-Gonzalez-Burgos-De Teresa, 2015

Question

Is there a **general theory** to determine the minimal time of null controllability for parabolic systems ?

$$\partial_t f + \mathcal{A}f = \mathcal{B}u$$

Thanks for your attention !