Null controllability of the Grushin equation: non-rectangular control region

M. Duprez1, A. Koenig2,

1Laboratoire Jacques-Louis Lions, Paris
2Laboratoire Jean-Alexandre Dieudonné, Nice

Séminaire d’analyse
Institut de Mathématiques de Bordeaux
18/10/18
1. Controllability of the heat equation

2. Controllability of the Grushin equation

3. Comments and open problems
Notions of controllability

Problematic
We search \(u \), called control, such that the solution \(f \) to system
\[
\begin{align*}
\partial_t f &= \mathcal{A}(f) + \mathcal{B}(u) \\
f(0) &= f^0
\end{align*}
\]
satisfies:
- \(f \) near a given target at time \(T \)
 \[\forall \varepsilon > 0, f^0, f^1, \exists u \text{ s.t. } d(f(T), f^1) \leq \varepsilon.\]

➤ Approximate controllability
- \(f \) reach a target at time \(T \)
 \[\forall f^0, f^1, \exists u \text{ s.t. } f(T) = f^1.\]

➤ Exact controllability
- \(f \) reach a target at time \(T \)
 \[\forall f^0, f^1, \exists u \text{ s.t. } f(T) = 0.\]

➤ Null controllability
Internal null controllability of the heat equation

Let Ω be an open bounded set of \mathbb{R}^n, ω an non-empty open set of Ω and $T > 0$.

Consider the heat equation

$$\begin{cases}
\partial_t f - \Delta f = 1_{\omega} u, \\
f|_{\partial \Omega} = 0, \\
f(0) = f^0.
\end{cases} \quad (1)$$

Theorem (Internal null controllability of the heat equation)

The heat equation (1) *is null controllable* at time T, i.e. for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \omega)$ such that solution f to (1) satisfies $f(T) = 0$.

→ Fattorini-Russell 71’ (dim 1) : moment method
→ Fursikov-Imanuilov / Lebeau-Robbiano 95’ : Carleman inequality / spectral inequality

Remark

- **No minimal time** of controllability
- **No geometrical condition** on ω
Boundary null controllability of the heat equation

Let Ω be an open bounded set of \mathbb{R}^n, γ an non-empty open set of $\partial \Omega$ and $T > 0$.

\[
\begin{cases}
\partial_t f - \Delta f = 0, \\
f|_{\partial \Omega} = 1_{\gamma} u, \\
f(0) = f^0.
\end{cases}
\]
(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is null controllable at time T, i.e. for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \gamma)$ such that solution f to (2) satisfies $f(T) = 0$.

Sketch of proof: the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- \tilde{f} : = solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u := \tilde{f}|_{\gamma}$

Remark

- Equivalence between internal and boundary null controllability
Boundary null controllability of the heat equation

Let Ω be an open bounded set of \mathbb{R}^n, γ an non-empty open set of $\partial \Omega$ and $T > 0$.

\[
\begin{cases}
\partial_t f - \Delta f = 0, \\
 f|_{\partial \Omega} = 1_{\gamma} u, \\
 f(0) = f^0.
\end{cases}
\]

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is null controllable at time T, i.e. for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \gamma)$ such that solution f to (2) satisfies $f(T) = 0$.

Sketch of proof : the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- $\tilde{f} : = \text{solution of the int. contr. problem on } \Omega \cup \tilde{\Omega}$
- $u : = \tilde{f}|_{\gamma}$

Remark

- Equivalence between internal and boundary null controllability
Boundary null controllability of the heat equation

Let Ω be an open bounded set of \mathbb{R}^n, γ an non-empty open set of $\partial \Omega$ and $T > 0$.

$$\begin{cases}
\partial_t f - \Delta f = 0, \\
f|_{\partial \Omega} = 1_\gamma u, \\
f(0) = f^0.
\end{cases} \quad (2)$$

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is null controllable at time T, i.e. for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \gamma)$ such that solution f to (2) satisfies $f(T) = 0$.

Sketch of proof: the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- $\tilde{f} : = \text{solution of the int. contr. problem on } \Omega \cup \tilde{\Omega}$
- $u : = \tilde{f}|_\gamma$

Remark

- Equivalence between internal and boundary null controllability
Boundary null controllability of the heat equation

Let Ω be an open bounded set of \mathbb{R}^n, γ an non-empty open set of $\partial \Omega$ and $T > 0$.

\[
\begin{cases}
\partial_t f - \Delta f = 0, \\
f|_{\partial \Omega} = 1_\gamma u, \\
f(0) = f^0.
\end{cases}
\]

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is **null controllable** at time T, i.e. for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \gamma)$ such that solution f to (2) satisfies $f(T) = 0$.

Sketch of proof: the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- $\tilde{f} : = $ solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u : = \tilde{f}|_\gamma$

Remark

- Equivalence between internal and boundary null controllability
Boundary null controllability of the heat equation

Let \(\Omega \) be an open bounded set of \(\mathbb{R}^n \), \(\gamma \) an non-empty open set of \(\partial \Omega \) and \(T > 0 \).

\[
\begin{cases}
\partial_t f - \Delta f = 0, \\
\left. f \right|_{\partial \Omega} = 1_\gamma u, \\
f(0) = f^0.
\end{cases}
\]

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is null controllable at time \(T \), i.e. for each initial condition \(f^0 \in L^2(\Omega) \), there exists a control \(u \in L^2([0, T] \times \gamma) \) such that solution \(f \) to (2) satisfies \(f(T) = 0 \).

Sketch of proof : the fictitious control method

- Extension \(\tilde{\Omega} \) of \(\Omega \) through \(\gamma \)
- \(\omega \subset \tilde{\Omega} \)
- \(\tilde{f} : = \) solution of the int. contr. problem on \(\Omega \cup \tilde{\Omega} \)
- \(u := \tilde{f}|_\gamma \)

Remark

- Equivalence between internal and boundary null controllability
Let Ω be an open bounded set of \mathbb{R}^n, γ an non-empty open set of $\partial \Omega$ and $T > 0$.

$$\begin{cases}
\partial_t f - \Delta f = 0, \\
f|_{\partial \Omega} = 1_\gamma u, \\
f(0) = f^0.
\end{cases}$$

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation (2) is null controllable at time T, i.e. for each initial condition $f^0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \gamma)$ such that solution f to (2) satisfies $f(T) = 0$.

Sketch of proof: the fictitious control method

- Extension $\tilde{\Omega}$ of Ω through γ
- $\omega \subset \tilde{\Omega}$
- $\tilde{f} : = $ solution of the int. contr. problem on $\Omega \cup \tilde{\Omega}$
- $u : = \tilde{f}|_{\gamma}$

Remark

- **Equivalence between internal and boundary null controllability**
Duality

Denote by \(f(t; f^0, u) \) the solution to

\[
\begin{aligned}
\partial_t f - \Delta f &= 1_{\omega} u, \\
 f|_{\partial \Omega} &= 0, \\
 f(0) &= f^0.
\end{aligned}
\]

(1)

Let \(Q_T := \Omega \times (0, T) \) and

\[
F_T : L^2(\Omega) \to L^2(\Omega), \quad G_T : L^2(Q_T) \to L^2(\Omega),
\]

\[
f^0 \mapsto f(T; f^0, 0) \quad u \mapsto f(T; 0, u)
\]

One has:

Null controllability of (1) \(\iff \forall f^0, \exists u : F_T(f^0) + G_T(u) = 0 \)

\(\iff \text{Im}(F_T) \subset \text{Im}(G_T) \)

\(\iff \|F_T^* \varphi^T\| \leq C\|G_T^* \varphi^T\|, \forall \varphi^T \)

Approximate controllability of (1) \(\iff \text{Im}(G_T) = L^2(\Omega) \)

\(\iff (G_T^* \varphi^T = 0 \Rightarrow \varphi^T = 0), \forall \varphi^T \)
Duality

\[
\begin{aligned}
\partial_t f - \Delta f &= 1_\omega u, \\
 f|_{\partial \Omega} &= 0, \\
 f(0) &= f^0.
\end{aligned}
\]

System (1) is null controllable on \((0, T)\), if and only if there exists \(C_{obs} > 0\) such that for all \(\varphi^T \in L^2(\Omega)\)

\[
\|\varphi(0)\|_{L^2(\Omega)} \leq C_{obs} \int_0^T \|\varphi\|_{L^2(\omega)} dt
\]

with \(\varphi\) the solution to the dual system.

System (1) is approx. controllable at time \(T\), if and only if for all \(\varphi^T \in L^2(\Omega)\) the solution to the dual system satisfies

\[
\varphi = 0 \text{ in } \omega \times (0, T) \Rightarrow \varphi = 0 \text{ in } Q_T.
\]
Approximate controllability of the heat equation

\[
\begin{aligned}
\partial_t f - \Delta f &= 1_\omega u \quad \text{in } Q_T, \\
f|_{\partial\Omega} &= 0 \quad \text{on } \Sigma_T, \\
f(0) &= f^0 \quad \text{in } \Omega.
\end{aligned}
\]

(1)

Since (1) is null controllable,

\[
\|\varphi(0)\|_{L^2(\Omega)} \leq C_{obs} \int_0^T \|\varphi\|_{L^2(\omega)} \, dt
\]

Hence

\[
\varphi = 0 \text{ in } \omega \times (0, T) \quad \Rightarrow \quad \varphi(0) = 0 \text{ in } \Omega
\]

\[
\Rightarrow \quad \varphi = 0 \text{ in } \Omega \times (0, T)
\]

Corollary (Approximate controllability of the heat equation)

The heat equation (1) is **approx. controllable** at time T, i.e. for each $f^0, f^1 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \omega)$ such that solution f to (1) satisfies $\|f(T) - f^1\| \leq \varepsilon$.

Michel Duprez
Null controllability of the Grushin equation
6
The heat equation

Conclusion

- **Non exact controllability**
 - Regularizing effect of the heat equation
- **Null controllability**
 - Equivalence of int. and bound. null contr. thanks to fictitious control method
- **Approximate controllability**
 - Come from the null controllability thanks to the duality

Question

How a modification of $-\Delta$ can influx these notions of controllability?
The Grushin equation

Consider

\[
\begin{cases}
(\partial_t - \partial^2_x - x^2 \partial^2_y) f(t, x, y) = 1_{\omega} u & t \in [0, T], (x, y) \in \Omega := (-1, 1) \times (0, 1), \\
f(t, x, y) = 0 & t \in [0, T], (x, y) \in \partial \Omega, \\
f(0, x, y) = f^0(x, y) & (x, y) \in \Omega,
\end{cases}
\]

\(a\) minimal time of internal null controllability \(T^* = a^2/2\)

➤ Beauchard-Miller-Morancey 2015

\(b\) minimal time of internal null controllability \(T^* > a^2/2\)

➤ Beauchard-Cannarsa-Guglielmi 2014

minimal time of boundary null controllability \(T^* = a^2/2\)

➤ Beauchard-Dardé-Ervedoza 2018

\(c\) No internal null controllability

➤ Koenig 2017
Positive result

Theorem (D.-Koenig)

Assume that there exist $\varepsilon > 0$ and $\gamma \in C^0([0, 1], \Omega)$ with $\gamma(0) \in (-1, 1) \times \{0\}$ and $\gamma(1) \in (-1, 1) \times \{\pi\}$ such that

$$\omega_0 := \{z \in \Omega, \text{distance}(z, \text{Range} (\gamma)) < \varepsilon\} \subset \omega,$$

then the Grushin equation is null-controllable in any time $T > \frac{a^2}{2}$, where

$$a := \sup_{(x,y) \in \Omega \setminus \omega_0} \{|x| : \exists x_0 \in (-1, 1), |x| < |x_0|, \text{sgn}(x) = \text{sgn}(x_0), (x_0, y) \in \omega_0\}.$$
Positive result: sketch of proof

Proof:

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

\[
\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{left}} = 1_{\omega_{\text{left}}} u_{\text{left}} & \text{on } [0, T] \times \Omega \\
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{right}} = 1_{\omega_{\text{right}}} u_{\text{right}} & \text{on } [0, T] \times \Omega \\\n f_{\text{left}}(0) = f_{\text{right}}(0) = f_0, f_{\text{left}}(T) = f_{\text{right}}(T) = 0 & \text{on } \Omega
\end{cases}
\]

There exists a function \(\theta \in C^\infty(\bar{\Omega}) \) such that

\(\theta = 0 \) on \(\omega_{\text{left}} \setminus \omega_0 \), \(\theta = 1 \) on \(\omega_{\text{right}} \setminus \omega_0 \), \(\text{supp}(\nabla \theta) \subset \omega_0 \).

We remark that \(f := \theta f_{\text{left}} + (1 - \theta) f_{\text{right}} \), solves

\[
\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f = 1_{\omega_0} u & \text{on } [0, T] \times \Omega, \\
f(0) = f_0, f(T) = 0 & \text{on } \Omega,
\end{cases}
\]

where \(u := \theta 1_{\omega_{\text{left}}} u_{\text{left}} + (1 - \theta) 1_{\omega_{\text{right}}} u_{\text{right}} + (f_{\text{right}} - f_{\text{left}})(\partial_x^2 + x^2 \partial_y^2)\theta + 2\partial_x (f_{\text{right}} - f_{\text{left}}) \partial_x \theta + 2x^2 \partial_y (f_{\text{right}} - f_{\text{left}}) \partial_y \theta. \)

\(\square \)
Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

\[
\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{left}} = \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} & \text{on } [0, T] \times \Omega \\
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{right}} = \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} & \text{on } [0, T] \times \Omega \\
f_{\text{left}}(0) = f_{\text{right}}(0) = f_0, f_{\text{left}}(T) = f_{\text{right}}(T) = 0 & \text{on } \Omega
\end{cases}
\]

There exists a function \(\theta \in C^\infty(\bar{\Omega}) \) such that

\[
\theta = 0 \text{ on } \omega_{\text{left}} \setminus \omega_0, \quad \theta = 1 \text{ on } \omega_{\text{right}} \setminus \omega_0, \quad \text{supp}(\nabla \theta) \subset \omega_0.
\]

We remark that \(f := \theta f_{\text{left}} + (1 - \theta) f_{\text{right}} \), solves

\[
\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f = \mathbf{1}_{\omega_0} u & \text{on } [0, T] \times \Omega, \\
f(0) = f_0, f(T) = 0 & \text{on } \Omega,
\end{cases}
\]

where \(u := \theta \mathbf{1}_{\omega_{\text{left}}} u_{\text{left}} + (1 - \theta) \mathbf{1}_{\omega_{\text{right}}} u_{\text{right}} + (f_{\text{right}} - f_{\text{left}})(\partial_x^2 + x^2 \partial_y^2) \theta \\
+ 2 \partial_x (f_{\text{right}} - f_{\text{left}}) \partial_x \theta + 2x^2 \partial_y (f_{\text{right}} - f_{\text{left}}) \partial_y \theta. \)
Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

\[
\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{left}} = 1_{\omega_{\text{left}}} u_{\text{left}} & \text{on } [0, T] \times \Omega \\
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f_{\text{right}} = 1_{\omega_{\text{right}}} u_{\text{right}} & \text{on } [0, T] \times \Omega \\
f_{\text{left}}(0) = f_{\text{right}}(0) = f_0, \ f_{\text{left}}(T) = f_{\text{right}}(T) = 0 & \text{on } \Omega
\end{cases}
\]

There exists a function \(\theta \in C^\infty(\bar{\Omega}) \) such that

\[\theta = 0 \text{ on } \omega_{\text{left}} \setminus \omega_0, \ \theta = 1 \text{ on } \omega_{\text{right}} \setminus \omega_0, \ \text{supp}(\nabla \theta) \subset \omega_0.\]

We remark that \(f := \theta f_{\text{left}} + (1 - \theta) f_{\text{right}}, \) solves

\[
\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f = 1_{\omega_0} u & \text{on } [0, T] \times \Omega, \\
f(0) = f_0, \ f(T) = 0 & \text{on } \Omega,
\end{cases}
\]

where \(u := \theta 1_{\omega_{\text{left}}} u_{\text{left}} + (1 - \theta) 1_{\omega_{\text{right}}} u_{\text{right}} + (f_{\text{right}} - f_{\text{left}})(\partial_x^2 + x^2 \partial_y^2)\theta + 2 \partial_x (f_{\text{right}} - f_{\text{left}}) \partial_x \theta + 2 x^2 \partial_y (f_{\text{right}} - f_{\text{left}}) \partial_y \theta. \)

\[\square\]
Negative result

Theorem (D.-Koenig)

If for some $y_0 \in (0, \pi)$ and $a > 0$ one has

$$\{(x, y_0), -a < x < a\} \cap \bar{\omega} = \emptyset,$$

then the Grushin equation is not null controllable in time $T < \frac{a^2}{2}$.

Remark: Since the Grushin equation is not null-controllable when ω is the complement of a horizontal strip [Koenig 2017], our Assumption is quasi optimal.
Observability

Proposition (see Coron’s book 2007 or Tucsnak-Weiss’s book 2009)

The Grushin equation is **null controllability** if, and only if, there exists $C > 0$ such that for all f_0 in $L^2(\Omega)$, the solution f to

$$\begin{cases}
(\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = 0 & t \in [0, T], (x, y) \in \Omega, \\
f(t, x, y) = 0 & t \in [0, T], (x, y) \in \partial \Omega, \\
f(0, x, y) = f_0(x, y) & (x, y) \in \Omega,
\end{cases}$$

satisfies

$$\int_{\Omega} |f(T, x, y)|^2 \, dx \, dy \leq C \int_{[0, T] \times \omega} |f(t, x, y)|^2 \, dt \, dx \, dy.$$
Assume that $\Omega = \mathbb{R} \times \mathbb{T}$.

For $n > 0$,

$$e^{-nx^2/2}$$

is the first eigenfunction of $-\partial_x^2 + (nx)^2$

and with associated eigenvalue n.

Then

$$e^{-nx^2/2} e^{i ny}$$

is an eigenfunction of $-\partial_x^2 - x^2 \partial_y^2$

and with eigenvalue n.

For the functions

$$f(t, x, y) = \sum a_n e^{-nt + i ny - nx^2/2},$$

the observability inequality reads:

$$\sum \left(\frac{2\pi}{n} \right)^{1/2} |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \omega} \left| \sum a_n e^{-nt + i ny - nx^2/2} \right|^2 dt \, dx \, dy$$
Assume that $\Omega = \mathbb{R} \times \mathbb{T}$.

For $n > 0$,
\[e^{-nx^2/2} \] is the first eigenfunction of $-\partial_x^2 + (nx)^2$
and with associated eigenvalue n.
Then
\[e^{-nx^2/2} e^{iny} \] is an eigenfunction of $-\partial_x^2 - x^2 \partial_y^2$
and with eigenvalue n.
For the functions
\[f(t, x, y) = \sum a_n e^{-nt+iny-nx^2/2}, \]
the observability inequality reads :
\[\sum \left(\frac{2\pi}{n} \right)^{1/2} |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \omega} \left| \sum a_n e^{-nt+iny-nx^2/2} \right|^2 dt \, dx \, dy \]
Negative result: sketch of proof

Consider the change of variable $z_x(t, y) := e^{-t+iy-x^2/2}$ and denote $D_x := \{e^{-x^2/2-t+iy}, 0 < t < T, (x, y) \in \omega\}$:

$$
\int_{[0,T] \times \omega} \left| \sum a_n e^{i ny-nt-nx^2/2} \right|^2 dt \, dx \, dy = \int_{-1}^{1} \int_{D_x} \left| \sum_{n>0} a_n z^{n-1} \right|^2 d\lambda(z) \, dx.
$$
Negative result: sketch of proof

Thus

\[
\int_{D(0,e^{-T})} \left| \sum_{n>0} a_n z^{n-1} \right|^2 d\lambda(z) \leq C \left| \sum_{n>0} a_n z^{n-1} \right|_{L^\infty(K)}.
\]
Negative result: sketch of proof

\[\int_{D(0, e^{-T})} \left| \sum_{n>0} a_n z^{n-1} \right|^2 \, d\lambda(z) \leq C \left| \sum_{n>0} a_n z^{n-1} \right|^2_{L^\infty(K)}. \]

Let \(z_0 \in D(0, e^{-T}) \setminus \overline{K} \) and
\(f : z \in \mathbb{C} \setminus z_0[1, +\infty) \mapsto (z - z_0)^{-1}. \)

Proposition (Runge’s theorem)

Let \(K \) be a connected and simply connected open subset of \(\mathbb{C} \), and let \(f \) be a holomorphic function on \(K \). There exists a sequence \((p_k) \) of polynomials that converges uniformly on every compact subset of \(K \) to \(f \).

Then, the family \(p_k \) is a counter example to the inequality on entire polynomials.
Negative result: sketch of proof

Assume now that $\Omega = (-1, 1) \times (0, 1)$.

For $n > 0$, let us note

$$v_n$$ the first eigenfunction of $-\partial_x^2 + (nx)^2$

with Dirichlet boundary condition on $(-1, 1)$, and with associated eigenvalue λ_n. Then

$$v_n(x) \sin(ny)$$ is an eigenfunction of $-\partial_x^2 - x^2 \partial_y^2$

with Dirichlet boundary condition on $\partial \Omega$, and with eigenvalue λ_n.

For the functions

$$f(t, x, y) = \sum a_n v_n(x)e^{-\lambda_n t}\sin(ny),$$

the observability inequality reads:

$$\sum |a_n|^2 |v_n|^2_{L^2} e^{-2\lambda_n T} \leq C \int_{[0, T] \times \omega} \left| \sum a_n v_n(x)e^{-\lambda_n t}\sin(ny) \right|^2 dt \, dx \, dy$$

Let us estimate the right hand-side of this inequality.
Noting \(\tilde{\omega} = \omega \cup \{(x,-y), (x,y) \in \omega \} \), this implies

\[
\int_{[0,T] \times \omega} \left| \sum a_n v_n(x) e^{-\lambda_n t} \sin(ny) \right|^2 dt \, dx \, dy
\leq C \int_{[0,T] \times \tilde{\omega}} \left| \sum a_n v_n(x) e^{in \gamma - \lambda_n t} \right|^2 dt \, dx \, dy.
\]
Negative result: sketch of proof

- Consider the change of variable

\[
\begin{cases}
\lambda_n = n + \rho_n \\
v_n(x) = e^{-(1-\varepsilon)nx^2/2}w_n(x) \\
z_x(t, y) = e^{-t+iy-(1-\varepsilon)x^2/2}
\end{cases}
\]

Then

\[
\int_{[0,T] \times \tilde{\omega}} \left| \sum a_n v_n(x) e^{iny - \lambda_n t} \right|^2 dt \, dx \, dy
\]

\[
= \int_{[0,T] \times \tilde{\omega}} \left| \sum_{n>0} a_n w_n(x) e^{-\rho_n t} z_x(t, y)^n \right|^2 dt \, dx \, dy.
\]

Remark (lemma)

The eigenfunction \(v_n \) of \(-\partial_x^2 + (nx)^2\) for the eigenvalue is closed to the eigenfunction of same operator on \(\mathbb{R} \) for the eigenvalue \(n \), i.e.

\[v_n \text{ closed to } \left(\frac{n}{2\pi} \right)^{1/4} e^{-nx^2/2} \quad \text{and} \quad \lambda_n \text{ closed to } n. \]
Negative result: sketch of proof

- Denoting \(D_x = \{ e^{- (1-\varepsilon) x^2 / 2} e^{-t+iy}, 0 < t < T, (x, y) \in \tilde{\omega} \} \), we get

\[
\int_{[0,T] \times \tilde{\omega}} \left| \sum_{n>0} a_n w_n(x) e^{-\rho_n t} z_x(t, y)^n \right|^2 dt \, dx \, dy
\]

\[
= \int_{-1}^{1} \int_{D_x} \left| \sum_{n>0} a_n w_n(x) e^{-\rho_n t} z^{n-1} \right|^2 d\lambda(z) \, dx.
\]
• Since ρ_n, w_n are closed to 0, 1,

$$\int_{-1}^{1} \left| \sum_{n>N} a_n w_n(x) e^{-\rho_n t} z^{n-1} \right|^2_{L^\infty(D_x)} \, dx \leq C \int_{-1}^{1} \left| \sum_{n>N} a_n z^{n-1} \right|_{L^\infty(U)} \, dx.$$
Thus

\[\int_{D(0,e^{-T})} \left| \sum_{n>0} a_n z^{n-1} \right|^2 \, d\lambda(z) \leq C \left| \sum_{n>N} a_n z^{n-1} \right|_{L^\infty(U)}. \]
Then
\[
\int_{D(0,e^{-T})} \left| \sum_{n>N} a_n z^{n-1} \right|^2 d\lambda(z) \leq C \left| \sum_{n>N} a_n z^{n-1} \right|_{L^\infty(U)}^2.
\]

Let \(z_0 \in D(0, e^{-T}) \setminus \overline{U} \) and
\[
f : z \in \mathbb{C} \setminus z_0[1, +\infty) \mapsto (z - z_0)^{-1}.
\]

Proposition (Runge’s theorem)

Let \(U \) be a connected and simply connected open subset of \(\mathbb{C} \), and let \(f \) be a holomorphic function on \(U \). There exists a sequence \((\tilde{p}_k) \) of polynomials that converges uniformly on every compact subsets of \(U \) to \(f \).

Then, the family \(p_k(z) := z^{N+1} \tilde{p}_k(z) \) is a counter example to the inequality on entire polynomials.
Corollary ($T_0 = a^2/2$)

Assume that there exist $\varepsilon > 0$ and $\gamma \in C^0([0, 1], \Omega)$ with $\gamma(0) \in (-1, 1) \times \{0\}$ and $\gamma(1) \in (-1, 1) \times \{\pi\}$ such that $\omega_0 := \{z \in \Omega, \text{distance}(z, \text{Range}(\gamma)) < \varepsilon\} \subset \omega$. Assume that some $y_0 \in (0, \pi)$, $\{(x, y_0), -a < x < a\}$ is disjoint from $\overline{\omega}$ where

$$a := \sup_{(x,y) \in \Omega \setminus \omega_0} \{|x| : \exists x_0 \in (-1, 1), |x| < |x_0|, \text{sgn}(x) = \text{sgn}(x_0), (x_0, y) \in \omega_0\}.$$

One has

- If $T > a^2/2$, then the Grushin equation is **null controllable** in time T.
- If $T < a^2/2$, then the Grushin equation is **not null controllable** in time T.

Open problems

We can’t go from the bottom boundary to the top boundary while staying inside ω.

$$T^* \geq a^2 / 2$$

A pinched domain.

$$T^* \geq a^2 / 2$$

A cave.

$$T^* \in [a^2 / 2, b^2 / 2]$$
Conclusion

- **Non exact controllability**
 - Regularizing effect of the heat equation

- **Approximate controllability**
 - Beauchard-Cannarsa-Guglielmi 2014

- **Minimal time null controllability**
 - Detailed description of the influence of the control region
Other example: Parabolic coupled systems

Consider

$$\begin{cases}
\partial_t f_1 - \Delta f_1 + q(x) f_2 = 0, \\
\partial_t f_2 - \Delta f_2 = 1_\omega u, \\
f|\partial\Omega = 0, \quad f(0) = f^0.
\end{cases} \quad (1)$$

System (1) is approx. contr. if and only if

$$I_k(q) = \int_0^\pi q(x) \phi_k(x)^2 \, dx \neq 0, \quad \forall k > 0. \quad (2)$$

where $\phi_k := \sqrt{2/\pi} \sin(kx)$.

If (2) is satisfied and $\text{Supp}(q) \cap \omega = \emptyset$, then the minimal time of null controllability of system (1) is given by

$$T^* = \limsup \frac{-\log |I_k(q)|}{k^2}.$$

Ammar Khodja-Benabdallah-Gonzalez-Burgos-De Teresa, 2015

Question

Is there a general theory to determine the minimal time of null controllability for parabolic systems?

$$\partial_t f + Af = Bu$$
Other example: Parabolic coupled systems

Consider

\[
\begin{aligned}
\partial_t f_1 - \Delta f_1 + q(x) f_2 &= 0, \\
\partial_t f_2 - \Delta f_2 &= 1_\omega u, \\
f_{|\partial\Omega} &= 0, \quad f(0) = f^0.
\end{aligned}
\] (1)

System (1) is approx. contr. if and only if

\[
I_k(q) = \int_0^\pi q(x) \phi_k(x)^2 dx \neq 0, \quad \forall k > 0.
\] (2)

where \(\phi_k := \sqrt{2/\pi} \sin(kx) \).

If (2) is satisfied and \(\text{Supp}(q) \cap \omega = \emptyset \), then the minimal time of null controllability of system (1) is given by

\[
T^* = \lim \sup \frac{-\log |I_k(q)|}{k^2}.
\]

Ammar Khodja-Benabdallah-Gonzalez-Burgos-De Teresa, 2015

Question

Is there a general theory to determine the minimal time of null controllability for parabolic systems?

\[
\partial_t f + Af = Bu
\]
Thanks for your attention!