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Motivation : Evacuation / egress in panic situation

Date Place Venue Deaths Injured Reason
1964 Lima, Peru Stadium 318 500 Goal disallowed
1992 Bastia, Corsica Stadium 17 1900
1996 Lusaka, Zambia Stadium 9 78 Stampede after Zambia’s

victory over Sudan
1996 Guatemala City, Stadium 80 180 Fans trying to force

Guatemala their way into the stadium
1999 Minsk, Belarus Subway 51 150 Heavy rain at rock concert
2000 Durban, Disco 13 44 Tear gas

South Africa
2000 Roskilde, Denmark Stadium 8 25 Failure of loud speakers

Helbing, D., Farkas, I. J., Molnar, P., & Vicsek, T. (2002). Simulation of pedestrian
crowds in normal and evacuation situations. Pedestrian and evacuation dynamics,
21(2), 21-58.
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Framework

Objectives

Act on a small set of agents⇒ sparse control

Act a small set of the configuration space⇒ sparse control

Interaction between the agents⇒ non local velocity
The velocity of a agent depends on the position of the other

⇒ integral term
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Framework

Objectives

Act on a small set of agents⇒ sparse control

Act a small set of the configuration space⇒ sparse control

Non local velocity→We take here a local velocity
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Framework : Model

Control region
(Fixed)

Initial crowd
Target crowdVelocity
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Framework : Model

ω

Control region
(Fixed)

Initial crowd

supp(µ0)

Target crowd

supp(µ1)

Velocity
v

Macroscopic model
Search u such that{

∂tµ+∇ · ((v + 1ωu)µ) = 0
µ(0) = µ0, µ(T ) ≈ µ1

with

v : population velocity

1ω(x)u(x, t) : control
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Framework : Notion of controllability

Problematic
We search u, called control,
such that the solution µ to system{

∂tµ+∇ · ((v + 1ωu)µ) = 0
µ(0) = µ0

satisfies :

ε

µ0

µ1

µ(T )

µ near a given target at time T

∀ε > 0, µ0, µ1, ∃ u s.t. d(µ(T ), µ1) 6 ε.
å Approximate controllability

y reach a target at time T

∀µ0, µ1, ∃ u s.t. µ(T ) = µ1.

å Exact controllability

We call minimal time the infimum of T for which the approximate/exact
controllability holds
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Framework : Distance?

Distance between two continuous crowds
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Framework : Distance?

If we represent the population by a density compactly supported :

x

y

µ0

µ1

µ2

‖µ0 − µ1‖Lp = ‖µ0 − µ2‖Lp

The Lp distance is not a good distance for the crowds ! ! !
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Framework : Distance?

Monge problem (1781)

Distance : minimal cost to send a mass on an other.

Continuous case

Discrete case
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Framework : Wasserstein distance

We denote by :

Γ := {γ : Rd → Rd Borel}.
Pc(Rd) := {probability measures compactly supported}.
Pacc (Rd) := {µ ∈ Pc(Rd) : abs. cont. w.r.t. the Lebesgue measure}.

Definition

Let γ ∈ Γ and µ ∈ Pacc (Rd). Push-forward of µ with γ :

(γ#µ)(E) := µ(γ−1(E)),

for all E ⊂ Rd such that γ−1(E) is µ-measurable.

Definition (Monge Problem)

Let p ∈ [1,∞) and µ, ν ∈ Pacc (Rd). Wasserstein distance between µ and ν :

Wp(µ, ν) = min
γ∈Γ

{(∫
Rd

|γ(x)− x|pdµ
)1/p

: γ#µ = ν

}
.
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Framework : Wasserstein distance

For µ, ν ∈ Pc(Rd), we denote by Π(µ, ν) the set of transference plans from µ to ν,
i.e. the probability measures on Rd × Rd which have marginals µ and ν :∫

y∈Rd

dπ(x, y) = dµ(x) and
∫
x∈Rd

dπ(x, y) = dν(y).

Definition (Kantorovich problem)

Let p ∈ [1,∞) and µ, ν ∈ Pc(Rd). Wasserstein distance between µ and ν :

Wp(µ, ν) = min
π∈Π(µ,ν)

{(∫∫
Rd×Rd

|x− y|pdπ(x, y)
)1/p

}
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Framework : Wellposedness

Definition

We define the flow (or the characteristic) associated to w : Rd × R→ Rd as
(x0, t) 7→ Φwt (x0) such that for all x0 ∈ Rd, t 7→ Φwt (x0) is solution to{

ẋ(t) = w(x(t), t), t > 0,
x(0) = x0.

Theorem (Method of Characteristics)

Let T > 0, µ0 ∈ Pc(Rd) and w a velocity field uniformly bounded, Lipschitz in
space and measurable in time. Then{

∂tµ+∇ · (wµ) = 0 in Rd × R+,

µ(0) = µ0 in Rd,

admits a unique solution µ in C0([0, T ];Pc(Rd)).
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Framework

Existing results
for transport PDEs with a non local velocity

Optimal control

å Colombo-Herty-Mercier 11’, Fornasier-Piccoli-Rossi 14’

Approximate alignment of the Cucker-Smale model

å Piccoli-Rossi-Trélat 15’

Lyapunov-like stabilisation

å Caponigro-Piccoli-Rossi-Trélat, 17’
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Controllability : Geometric condition

Geometric condition

(i) ∀x0 ∈ supp(µ0),∃ t0 ∈ (0, T ) : Φvt0 (x0) ∈ ω.
(ii) ∀x1 ∈ supp(µ1),∃ t1 ∈ (0, T ) : Φv−t1 (x1) ∈ ω.

Control
region

Control
region
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Controllability : Geometric condition

Geometric condition does not hold !

Control
region

Control
region
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Controllability : Geometric condition

Geometric condition does not hold !

Control
region

Control
region
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Controllability

Approximate controllability

Geometric condition

(i) ∀x0 ∈ supp(µ0),∃ t0 ∈ (0, T ) : Φvt0 (x0) ∈ ω.
(ii) ∀x1 ∈ supp(µ1),∃ t1 ∈ (0, T ) : Φv−t1 (x1) ∈ ω.

Theorem (D.-Morancey-Rossi 2017)

Let µ0, µ1 ∈ Pacc (Rd). Assume the Geometric Condition.
System (1) is approximately controllable with a Lipschitz control.
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Controllability : Sketch of proof for the approx. contr.

Global strategy

(i) Step 1 : We send µ0 to ν0 supported in a square S ⊂⊂ ω.
We send µ1 to ν1 supported in a square S ⊂⊂ ω.

(ii) Step 2 : We send approximately ν0 to ν1.
S

ω

Concentration in S Concentration in SApproximate
control.
Inside S

µ0 µ1
ν0 ν1

u1 u2u3

Final computation :

µ0 µ(T )
t

u1 −u2u3
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Controllability : Sketch of proof for the approx. contr.

Approximate controllability in a square

To simplify, we suppose that dim=2.
Let S ⊂⊂ ω. Assume that

supp(µ0), supp(µ1) ⊂ S.

Goal : Find u such that the solution to

∂tµ+ div(uµ) = 0,

satisfies supp(µ(t)) ⊂ S and

W2(µ1, µ(T )) 6 ε.
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Macroscopic model : Sketch of proof for the approx. contr.

Discretization following the mass of µ0 and µ1

x2

x1

...
...

1
n · · ·

...

...

1/n2 · · · ...
...

∫
A0

ij

dµ0 =
∫
A1

ij

dµ1 = 1
n2

Michel Duprez Control problems related to some crowd dynamics 17



Controllability : Sketch of proof for the approx. contr.

Center of the cells

b0−i b0+
i

b0−ij

b0+
ij

1
n2 −

1
n3

∫
B0

ij

dµ0(x) =
∫
B1

ij

dµ1(x) = 1
n2 −

1
n3

B0
ij = (b0−i b0+

i )× (b0−ij , b
0+
ij ) B1

ij = (b1−i b1+
i )× (b1−ij , b

1+
ij )

Remark : We do not control the mass outside B0
ij .
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Controllability : Sketch of proof for the approx. contr.

Construction of the flow

We send linearly µ0
|B0

ij
on B1

ij :

t

x

x

µ0

µ(T )

µ1
|B1

ij

B0
ij

B1
ij

µ0
|B0

ij

Remark : |B0
ij | −→

n→∞
0.
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Controllability : Sketch of proof for the approx. contr.

Construction of the flow

For all x0 = (x0
1, x

0
2) ∈ Aij , we build the flow

Φut (x0) :=


a+
i − x

0
1

a+
i − a

−
i

c−i (t) + x0
1 − a−i

a+
i − a

−
i

c+i (t)

a+
ij − x

0
2

a+
ij − a

−
ij

c−ij(t) +
x0

2 − a−ij
a+
ij − a

−
ij

c+ij(t)

 ,

where 
c−i (t) = (b−i − a

−
i )t+ a−i ,

c+i (t) = (b+i − a
+
i )t+ a+

i ,
c−ij(t) = (b−ij − a

−
ij)t+ a−ij ,

c+ij(t) = (b+ij − a
+
ij)t+ a+

ij .

Thus
ΦuT (Aij) = Bij .

Remark : We take a C∞ extension outside Aij .
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Controllability : Sketch of proof for the approx. contr.

Construction of the control

The corresponding velocity is given by{
u1(x, t) = αi(t)x1 + βi(t),
u2(x, t) = αij(t)x2 + βij(t),

where 
αi(t) = b+i − b

−
i + a−i − a

+
i

c+i (t)− c−i (t)
, βi(t) = a+

i b
−
i − a

−
i b

+
i

c+i (t)− c−i (t)
,

αij(t) =
b+ij − b

−
ij + a−ij − a

+
ij

c+ij(t)− c
−
ij(t)

, βij(t) =
a+
ijb
−
ij − a

−
ijb

+
ij

c+ij(t)− c
−
ij(t)

.
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Controllability : Sketch of proof for the approx. contr.

Estimation of the distance

Define
R := (0, 1)2 \

⋃
ij

B1
ij ,

We have

W1(µ1, µ(T )) 6
n∑

i,j=1
W1(µ1 × 1B1

ij
, µ(T )× 1B1

ij
)︸ ︷︷ ︸

Included in B1
ij

+W1(µ1 × 1R, µ(T )× 1R)︸ ︷︷ ︸
Small mass
No control

.
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Controllability : Sketch of proof for the approx. contr.

There exist measurable maps γij : R2 → R2 and γ : R2 → R2 such that

γij#(µ1 × 1B1
ij

) = µ(T )× 1B1
ij

and γ#(µ1 × 1R) = µ(T )× 1R.

We have

W1(µ1 × 1B1
ij
, µ(T )× 1B1

ij
) =

∫
B1

ij

|x− γij(x)|dµ1(x)

6 [(b1+
i − b

1−
i ) + (b1+

ij − b
1−
ij )]

∫
B1

ij

dµ1(x)

6 (b1+
i − b

1−
i + b1+

ij − b
1−
ij )
( 1
n2 −

1
n3

)
and

W1(µ1 × 1R, µ(T )× 1R) 6

∫
R

|x− γ(x)|dµ1(x)

6 diam(S) 1
n
.

Thus
W1(µ1, µ(T )) −→

n→∞
0.

�
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Controllability

Exact controllability

Remark

With a Lipschitz velocity field, the flow is a homeomorphism,
then supp(µ0) and supp(µ1) have to be homeomorph.
In particular, we cannot separate a mass in two parts or bring together to
different masses.

Even with a BV velocity field we cannot bring together to different masses.

For a Borel velocity field, the solution is not garanteed unique.

Theorem (D.-Morancey-Rossi 2017)

Let µ0, µ1 ∈ Pc(Rd). Assume the Geometric Condition.

• System (1) is not always exactly contr. with a Lipschitz control (or BV).

• There exists a couple (µ, u) solution of system (1) such that µ(T ) = µ1

with a Borel control.
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Minimal time : Microscopic model

If we take µ0 = 1
n

∑n

i=1 δX0
i

(with X0
i 6= X0

j for all i 6= j) as initial data in{
∂tµ+∇ · ((v + 1ωu)µ) = 0
µ(0) = µ0,

then the solution is given by

µ(t) = 1
n

n∑
i=1

δXi(t)

where Xi is solution to{
Ẋi(t) = v(Xi(t)) + 1ω(Xi(t))u(Xi(t), t)
Xi(0) = X0

i

where X0 := {X0
1 , ..., X

0
n}.

We will call this system the microscopic model.
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Minimal time : Microscopic model

Microscopic model

We recall that {
Ẋi(t) = v(Xi(t)) + 1ω(Xi(t))u(Xi(t), t)
Xi(0) = X0

i

Theorem (D.-Morancey-Rossi 2017)

Assume the Geometric Condition and ω convex.
System (1) is exactly controllable with a Lipschitz control.
Moreover the minimal time to exactly steer X0 to X1 is equal to :

T0 = min
σ∈Sn

max
i∈{1,...,n}

|t0i + t1σ(i)|

where {
t0i := inf{t > 0 : Φvt (X0

i ) ∈ ω}
t1i := inf{t > 0 : Φvt (X1

i ) ∈ ω}
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Minimal time : Microscopic model

Cost of transport

X0
i

Y 0
i X1

i
Y 1
i

ω

Define

Kij :=
{
‖(Y 0

i , t
0
i )− (Y 1

j , T − t1j )‖Rd+1 if t0i < T − t1j ,
∞ otherwise,

where {
t0i := inf{t > 0 : Φvt (X0

i ) ∈ ω}
t1i := inf{t > 0 : Φvt (X1

i ) ∈ ω}
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Minimal time : Microscopic model

Computation of the optimal permutation

Consider the minimisation problem

inf
π∈Bn

{
1
n

n∑
i,j=1

Kijπij

}
,

where Bn is the set of bistochastic matrices π := (πij)16i,j6n, i.e.

n∑
i=1

πij = 1,
n∑
j=1

πij = 1, πij > 0.

The infimum is reached.

Since Bn is convex, there exists a minimum which is a permutation matrix.
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Minimal time : Microscopic model

No intersection of the trajectories

By contradiction : no intersection of the trajectories

(Y 0
i , t

0
i )

(Y 0
j , t

0
j )

(Y 1
σ(j), T − t1σ(j))

(Y 1
σ(i), T − t1σ(i))
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Minimal time : Microscopic model

Computation of the optimal time

Corollary

Assume the Geometric Condition and ω convex.
Assume the {t0i }i∈{1,...,n} et {t1i }i∈{1,...,n} are increasingly and decreasingly
ordered respectively, then

T0 := max
i∈{1,...,n}

{t0i + t1i }.

...

...

...

...

t01

t02

t0k

t0k+1

t11

t12

t1k

t1k+1
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Minimal time : Macroscopic model
We define for all m ∈ [0, 1]{

F−1
0 (m) := inf{t ≥ 0 : F0(t) > m},
F−1

1 (m) := inf{t ≥ 0 : F1(t) > m},
with for all t ≥ 0{

F0(t) := µ0({x0 ∈ Supp(µ0) : t0(x0) 6 t}),
F1(t) := µ1({x1 ∈ Supp(µ0) : t1(x1) 6 t}).

Theorem (D.-Morancey-Rossi 17’)

Let µ0, µ1 ∈ Pacc (Rd). Assume the Geometric Condition and ω convex.

T0 := max
m∈[0,1]

{F−1
0 (m) + F−1

1 (1−m)}.

Then

(i) For all T > T0, System (1) is approximately controllable from µ0 to µ1 at
time T with a control 1ωu : Rd × R+ → Rd uniformly bounded, Lipschitz in
space and measurable in time.

(ii) For all T ∈ (T ∗2 , T0), System (1) is not approximately controllable from µ0

to µ1, where T ∗2 is the time at which each agent has crossed the control region.

Remark
If T ∈ (0, T ∗2 ), then we cannot act on all the measure,
but the measure can reach alone the desired configuration.
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Minimal time : Macroscopic model, sketch of proof

Step 1 : Uniform discretization of supp(µ0) and supp(µ1)

hx2

x1

We take h small enough such that the cells
Kh satisfies for a t∗ > 0

Φvt∗ (Kh) ⊂⊂ ω,

Step 2 : Discretization following the mass of the cells Kh

x2

x1

...
... · · · ...

...
· · ·

...
...

Each cell will the same mass 1/n2.

The rest will be negligible.
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Minimal time : Macroscopic model, sketch of proof

Step 3 : Association of the masses

We use the results of the discrete case to associate the masses

We approximate the measure by a sum of Dirac.

We control this discrete approximation.

We follow the trajectory of the Dirac masses, up to a concentration of the mass.

Dificulty : The application x 7→ t0(x) is not continuous !
(Time at which Φvt (x) belongs to ω)
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Numerical simulation : Microscopic model

Algorithm 1 Minimal time problem for exact contr. : Discrete case
Step 1 : Computation of the minimal time.

T0 := max
16i6N}

{t0i + t1i }

where (t0i )i increasing and (t1i )i decreasing.
Step 2 : Computation of an optimal permutation to steer X0 to X1

inf
π∈Bn

 1
n

n∑
i,j=1

Kijπij


Step 3 : Computation of the control u and the solution X
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Numerical simulation : Microscopic model

Initial configuration X0

Final configuration X1

v := (1, 0).
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Numerical simulation : Microscopic model
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Numerical simulation : Macroscopic model

Algorithm 2

Step 1 : Discretisation of µ0 and µ1

(i) Construction of the uniform mesh
(ii) Computation of the cells B0

ij and B1
ij following the mass

Step 2 : Define ωn := {x ∈ Rd : d(x, ωc) > (2n2 − 1)/n4}.
Computation of the minimal time

T0 := max
16i6N−R}

{t0i+R(ωn) + t1i (ωn)}

where R := bNε/2c and (t0i )i increasing and (t1i )i decreasing.
Step 4 : Computation of the optimal permutation

inf
π∈Bn

 1
n

n∑
i,j=1

Kijπij


Step 5 : Concentration of the masses (if necessary)
Step 6 : Final computation
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Numerical simulation : Macroscopic model
Consider the initial data µ0 and the target µ1 defined by

µ0 :=
{

1/8 if (x, y) ∈ (0, 4)× (1, 3),
0 otherwise

and

µ1 :=
{

1/16 if (x, y) ∈ (8, 14)× (0, 4)\(9, 13)× (2, 3),
0 otherwise.

We fix the velocity field v := (1, 0) and the control region ω := (5, 7)× (0, 4).
The minimal time is equal to : 8s.

µ0 ω

µ1

0 4 5 7 8 14
0
1

3
4

v = (1, 0)
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Numerical simulation : Macroscopic model
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Perspectives : interactions

Controllability to trajectories for a model with interactions

Optimal control with interactions

Pontryagin Maximum Principle

ẋi = 1
N

N∑
j=1

V (xi − xj) −→
N→∞

∂tµ+ div(v[µ]µ) = 0
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Perspectives : interactions
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Perspectives : Braess paradox

images.math.cnrs.fr/modelisation-de-mouvements-de.html
B. Maury, J. Venel, 2011.
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Thank you for your attention !


