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Motivation : Evacuation / egress in panic situation

Date | Place Venue Deaths | Injured | Reason
1964 | Lima, Peru Stadium 318 500 | Goal disallowed
1992 | Bastia, Corsica Stadium 17 1900
1996 | Lusaka, Zambia Stadium 9 78 | Stampede after Zambia’s
victory over Sudan
1996 | Guatemala City, Stadium 80 180 | Fans trying to force
Guatemala their way into the stadium
1999 | Minsk, Belarus Subway 51 150 | Heavy rain at rock concert
2000 | Durban, Disco 13 44 | Tear gas
South Africa
2000 | Roskilde, Denmark | Stadium 8 25 | Failure of loud speakers

Helbing, D., Farkas, 1. J., Molnar, P., & Vicsek, T. (2002). Simulation of pedestrian
crowds in normal and evacuation situations. Pedestrian and evacuation dynamics,
21(2), 21-58.
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Framework

Objectives

e Act on a small set of agents = sparse control
e Act a small set of the configuration space = sparse control

o Interaction between the agents = non local velocity
The velocity of a agent depends on the position of the other
= integral term
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Framework

Objectives

e Act on a small set of agents = sparse control

e Act a small set of the configuration space = sparse control

o Nenlocal-veloeity — We take here a local velocity

Michel Duprez Control problems related to some crowd dynamics



w Target crowd
Initial crowd ]
mntrol region\

(Fixed)

Michel Duprez Control problems related to some crowd dynamics 4



Framework : Model

Velocity

Initial crowd

Targetcrowd

Control region
(Fixed)

Macroscopic model
Search w such that with

{ Qep+V - ((v+IL w)p)
p(0) = 1, (T ~

Il
o

@ v : population velocity
@ 1. (z)u(x,t): control
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Framework : Notion of controllability

Problematic
We search u, called control,
such that the solution p to system

{ Opp+ V- (v+1Tou)u) =0
1(0) = p°

satisfies :
@ , near a given target at time 7'
Ve > 0,.% 1", Ju st d(u(T),p') <e.
= Approximate controllability
@ y reach a target at time 1T’
v, pt, Just w(T) = ut
= Exact controllability
We call minimal time the infimum of 7" for which the approximate/exact
controllability holds
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Framework : Distance ?

Distance between two continuous crowds
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Framework : Distance ?

If we represent the population by a density compactly supported :

Y

— Uo
—

— 42

lo — pallee = |lpo — izl Le

The L? distance is not a good distance for the crowds!!!
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Framework : Distance ?

Monge problem (1781)

Distance : minimal cost to send a mass on an other.

Continuous case

. ]
Discrete case n
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Framework : Wasserstein distance

We denote by :
@ I':= {y:R% — R Borel}.
o Pc(Rd) := {probability measures compactly supported}.
@ PI(RY) := {u € Po(R?) : abs. cont. w.r.t. the Lebesgue measure}.
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Framework : Wasserstein distance

We denote by :
@ I':= {y:R% — R Borel}.
o Pc(Rd) := {probability measures compactly supported}.
@ PI(RY) := {u € Po(R?) : abs. cont. w.r.t. the Lebesgue measure}.

Definition

Let v € I and pu € P2¢(R?). Push-forward of z with ~ :

(V#H)(B) = u(y ™ (B)),

for all E C R? such that v~ (E) is y-measurable.
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Framework : Wasserstein distance

We denote by :
@ I':= {y:R% — R Borel}.
o Pc(Rd) := {probability measures compactly supported}.
@ PI(RY) := {u € Po(R?) : abs. cont. w.r.t. the Lebesgue measure}.

Definition

Let v € I and pu € P2¢(R?). Push-forward of z with ~ :

(V#H)(B) = u(y ™ (B)),

for all E C R? such that v~ (E) is y-measurable.

Definition (Monge Problem)

Letp € [1,00) and p, v € P2°(R?). Wasserstein distance between  and v

1/p
Wp(p,v) = min { </ Iv(z) — wlpdu> DyHR = V} :
yel Rd
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Framework : Wasserstein distance

For i, v € P.(R%), we denote by IT(u, v) the set of transference plans from y to v,
i.e. the probability measures on R? x R which have marginals y and v :

z€eR4

/ ) dr(z,y) = du(x) and / dr(z,y) = dv(y).

Definition (Kantorovich problem)

Letp € [1,00) and p, v € P.(R?). Wasserstein distance between 1 and v :

1/p
Wp(p,v) = min |z — ylPdr(z,y)
mEM(p,v) R4 xR
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Framework : Wellposedness

Definition
We define the flow (or the characteristic) associated to w : R? x R — R% as
(2°,1) — ®¥(2°) such that for all 2° € R?, t — &} (x°) is solution to

(1) = w(z(t),1),t > 0,
{ z(0) = z°

Theorem (Method of Characteristics)

LetT > 0, u° € P.(R?) and w a velocity field uniformly bounded, Lipschitz in
space and measurable in time. Then

O+ V- (wp)=0 inR?xRT,
11(0) = p° inRY,

admits a unique solution y in C°([0, T]; P.(R%)).

Michel Duprez Control problems related to some crowd dynamics
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Framework

Existing results
for transport PDEs with a non local velocity

@ Optimal control

= Colombo-Herty-Mercier 11°, Fornasier-Piccoli-Rossi 14’
@ Approximate alignment of the Cucker-Smale model

= Piccoli-Rossi-Trélat 15’

@ Lyapunov-like stabilisation

= Caponigro-Piccoli-Rossi-Trélat, 17’

Michel Duprez Control problems related to some crowd dynamics
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Controllability : Geometric condition

Geometric condition
(i) Vz° € supp(u”),3t° € (0,T) : @4 (2°) € w.
(i) Vz' € supp(p'),3It' € (0,7) : ®° 1 (2') € w.

. A A

Control
region
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Controllability : Geometric condition

Geometric condition does not hold!

Control
region
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Controllability : Geometric condition

Geometric condition does not hold !

Control
region
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Controllability

Approximate controllability

Geometric condition

(i) Vz° € supp(”),3t° € (0,T) : ®% (2°) € w.
(i) Vz' € supp(p'),3t" € (0,7): @° .1 (2") € w.

Theorem (D.-Morancey-Rossi 2017)

Let 10, pu' € P&e(R?). Assume the Geometric Condition.
System (1) is approximately controllable with a Lipschitz control.
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Controllability : Sketch of proof for the approx. contr.

Global strategy

(i) Step 1:We send 1.° to v/° supported in a square S CC w.
We send ;1! to v supported in a square S CC w.

(ii) Step 2 : We send approximately v° to v

ut ud u? L
/ ) At > I/O 777777777777 > 1/1 - - - == /'1’
Concentration in S Approximate Concentration in S
control.
Inside S
Final computation :
0
p ut u® —u? w(T)

Michel Duprez Control problems related to some crowd dynamics 15



Controllability : Sketch of proof for the approx. contr.

Approximate controllability in a square

To simplify, we suppose that dim=2.
Let S CC w. Assume that

supp(12”), supp(u') C S.

Goal : Find u such that the solution to
O + div(up) =0,
satisfies supp(p(t)) C S and

Wa(u', w(T)) < e.
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Macroscopic model : Sketch of proof for the approx. contr.

Discretization following the mass of 1.° and ;!

Z2

1/n?

/ de:/ d;f:i?
A A n

0 1
ij ij
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Controllability : Sketch of proof for the approx. contr.

Center of the cells

0/ 1N 11
/B(J‘ d/l’ (x) _/B d/,L (.’L’) - ’I’L2 ’I’L3
()

1
ij

By = (b)7b)7) x (b, b07) Bl = (b, b;T) x (b, b;)

i i

Remark : We do not control the mass outside 3.
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Controllability : Sketch of proof for the approx. contr.

Construction of the flow

We send linearly /‘?BO. on B}j :
ij

w(T) —— z
\ BZ] ]
\ I
\ I
1 1
\ I
\ I
1 1
\ I
\ I
0 \ 1
,U‘B(l \ I
o ijo I
x
K BY.
)

Remark : |B;| — 0.
n— o0
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Controllability : Sketch of proof for the approx. contr.

Construction of the flow

For all 2° = (29, 29) € A;;, we build the flow

=Ty + T
+ _ + _ -t
wy 0 a,; a, a; a;
Dy (z”) := af _ 0 20— a- )
ij 2 - 2 ij +
¥ () + ——=c(1)
@y = Qi @y = Qi
where
¢ (t) =(b; —a;)t+a,;,
o (t) = (b —af)t+af,
c;;(t) = (by; — a;)t + a;;,
ch(t) = (b — al)t + af.
Thus

7 (Aij) = Bij-

Remark : We take a C* extension outside A;;.
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Controllability : Sketch of proof for the approx. contr.

Construction of the control

The corresponding velocity is given by

ui(z,t) = a;(t)zr + Bi(t),
uz(z, t) = auj(t)za + Bij(t),

where
b —b +a; —af a/b; —a; b/
a;(t) = T - , Bit) = B re——
i (1) — ¢ (1) ci (1) = ¢ (1)
b+ —b..+a.. — a_.". aj‘.b._. — a._.bf
O P B B By ) T
Cij (t) — Cij(t) Cij(t) — Gy (t)
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Controllability : Sketch of proof for the approx. contr.

Estimation of the distance

Define
R:=(0,1)*\ | B}
ij

‘We have

n

Wi(ph, w(1) < 30 Walp! x s, (1) X D)+ Wi x L, p(T) X 1g) .

ij=1

Included in B}, Small mass
’ No control

Michel Duprez Control problems related to some crowd dynamics 22



Controllability : Sketch of proof for the approx. contr.

There exist measurable maps ;; : R — R? and 7 : R? — R? such that

Vit x g1 ) =p(T) x Ly and  F#(u' x Ln) = p(T) x Lg.
‘We have
Wil X Ly (D) x 1) = [ o=@l @
B
ij
< (e -l -l [ ade)
Bij
1 1
1+ g1- 1+ p1-
< (6T =T b =) (ﬁ_ﬁ>
and
Wil x 1, u(T) x 1) < / & — () ldie ()
R
1
< i —.
< diam(S) -
Thus

Wi (u', w(T)) — 0.
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Controllability

Exact controllability

Remark

@ With a Lipschitz velocity field, the flow is a homeomorphism,
then supp(1°) and supp(p*) have to be homeomorph.
In particular, we cannot separate a mass in two parts or bring together to
different masses.

@ Even with a BV velocity field we cannot bring together to different masses.

@ For a Borel velocity field, the solution is not garanteed unique.
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Controllability

Exact controllability

Remark

@ With a Lipschitz velocity field, the flow is a homeomorphism,
then supp(1°) and supp(p*) have to be homeomorph.
In particular, we cannot separate a mass in two parts or bring together to
different masses.

@ Even with a BV velocity field we cannot bring together to different masses.

@ For a Borel velocity field, the solution is not garanteed unique.

Theorem (D.-Morancey-Rossi 2017)
Let u°, pu' € Pc(Rd). Assume the Geometric Condition.
e System (1) is not always exactly contr. with a Lipschitz control (or BV).

o There exists a couple (u, u) solution of system (1) such that p(T) = p*
with a Borel control.
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Minimal time : Microscopic model

If we take p1” = = 3" §yo (with X7 # X forall i # j) as initial data in

Oepp+ V- ((v+ Tuu)p) =0
1(0) = p,

then the solution is given by

1 n
plt) =~ > oxw
i=1

where X is solution to

where X° := {X?, ..., X2}.
We will call this system the microscopic model.

Michel Duprez Control problems related to some crowd dynamics
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Minimal time : Microscopic model

Microscopic model

‘We recall that

Theorem (D.-Morancey-Rossi 2017)

Assume the Geometric Condition and w convex.

System (1) is exactly controllable with a Lipschitz control.
Moreover the minimal time to exactly steer X° to X' is equal to :

To = min max |t0+t,.
O ses, el n}‘ P o]

where
& o= inf{t >0: @E(X?) € w}
t:=inf{t > 0: ®}(X}) € w}

Michel Duprez Control problems related to some crowd dynamics

26



Minimal time : Microscopic model

Cost of transport

Define

K, e L N0 ) = (VT = t)lgass i8] < T — 5,
7 00 otherwise,

where

t) = inf{t > 0: ®Y(X?) € w}
th=inf{t > 0: ®}(X}) € w}

Michel Duprez Control problems related to some crowd dynamics
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Minimal time : Microscopic model

Computation of the optimal permutation

Consider the minimisation problem

. 1
REpIrENS

i,j=1

where B, is the set of bistochastic matrices m := (74;)1<i,j<n, i.€.

n n
E ’iTi]':l, E 7T7;j:1, Tﬁ;jZO.
i=1 j=1

The infimum is reached.

Since B, is convex, there exists a minimum which is a permutation matrix.

Michel Duprez Control problems related to some crowd dynamics
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Minimal time : Microscopic model

No intersection of the trajectories

By contradiction : no intersection of the trajectories

1 1
Yoy T = tos)

o

Michel Duprez Control problems related to some crowd dynamics
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Minimal time : Microscopic model

Computation of the optimal time

Corollary

Assume the Geometric Condition and w convex.

Assume the {t?}ie{l,...,n} et {t! }Yie{,...,n} are increasingly and decreasingly
ordered respectively, then

.....

To := max t?—i—t} .

0 iE{l,...,n}{ }
1y — _—
1) — —_—
) — —_—
9y —— - i,

Michel Duprez Control problems related to some crowd dynamics 30



Minimal time : Macroscopic model

We define for all m € [0, 1]
Fyt(m) == inf{t > 0: Fo(t) = m},
Frl(m) = 1inf{t > 0: Fi(t) = m},
with forall ¢ > 0

Fo(t) := pn®({z° € Supp(p®) : t°(°) < t}),
Fu(t) = p'({* € Supp(p®) : t' (") < t}).
Theorem (D.-Morancey-Rossi 177)

Let 1°, ' € P2°(RY). Assume the Geometric Condition and w convex.

Tp := max {Fy '(m) + F; (1 —m)}.
me(0,1]

Then

(i) Forall T > Ty, System (1) is approximately controllable from p° to ;' at
time 7" with a control 1,,u : R? x RT — R? uniformly bounded, Lipschitz in
space and measurable in time.

(ii) Forall T € (T5,Tp), System (1) is not approximately controllable from 1.°
to ', where T3 is the time at which each agent has crossed the control region.
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Minimal time : Macroscopic model, sketch of proof

Step 1 : Uniform discretization of supp(;.°) and supp(')

h
T2 —>

We take h small enough such that the cells
K, satisfies forat* > 0

D7 (Kp) CCw,

T

Step 2 : Discretization following the mass of the cells /K,

]

— M @ Each cell will the same mass 1/n°.

CE L @ The rest will be negligible.
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Minimal time : Macroscopic model, sketch of proof

Step 3 : Association of the masses

We use the results of the discrete case to associate the masses

@ We approximate the measure by a sum of Dirac.
@ We control this discrete approximation.

@ We follow the trajectory of the Dirac masses, up to a concentration of the mass.

Dificulty : The application = — t°(z) is not continuous !
(Time at which @7 (z) belongs to w)
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Numerical simulation : Microscopic model

Algorithm 1 Minimal time problem for exact contr. : Discrete case
Step 1 : Computation of the minimal time.

Ty = 0+ ¢}
0 122%}{ i T z}

where (t9); increasing and (¢}); decreasing.
Step 2 : Computation of an optimal permutation to steer X° to X!

1 n
inf —E Kimi;
m€B, | N A v
t,j=1

Step 3 : Computation of the control » and the solution X
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Numerical simulation : Microscopic model

Initial configuration X°

al ]
3L Webee® ]
l:-. .‘.:u
2r .l.?l ] 1
Id
| |
oL 1
Q 2 4 6 8 10 12 14
al
3L
2+
1t
[0)8 4
0 2 4 6 8 10 12 14
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Numerical simulation : Macroscopic model

Algorithm 2

Step 1 : Discretisation of x° and !
(i) Construction of the uniform mesh
(i) Computation of the cells BO and B1 following the mass
Step 2 : Define wy, := {x € Rd cd(z,w ) (2n2 —1)/n}.
Computation of the minimal time

Ty = t9 t

o= max | {thn(en) + )

where R := | Ne/2] and (?); increasing and (¢}); decreasing.
Step 4 : Computation of the optimal permutation

f K;
7r1€an { ]Zl i g }
Step 5 : Concentration of the masses (if necessary)

Step 6 : Final computation
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Numerical simulation : Macroscopic model

Consider the initial data ;.° and the target ;1" defined by

o._ ) 1/8 if(z,y) € (0,4) x (1,3),
=9 0 otherwise

and
v ) /16 if (x,y) € (8,14) x (0,4)\(9,13) x (2,3),
=10 otherwise.
We fix the velocity field v := (1, 0) and the control region w := (5,7) x (0,4).
The minimal time is equal to : 8s.

v = (170)
e
4
1
3 w
I w
1
0 4 5 7 8 14
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Perspectives : interactions

@ Controllability to trajectories for a model with interactions
@ Optimal control with interactions

@ Pontryagin Maximum Principle

N
.1 . B
b=y 1jV<xi—xj> = Ot div(olule) = 0
-
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Thank you for your attention !



