Rule of the mesh in the Finite Element Method

M. Duprez¹, V. Lleras² and A. Lozinski³

¹CEntre de REcherche en MAthématiques de la DÉsision, Paris ²IMAG, Montpellier ³Laboratoire de Mathématiques de Besançon

Séminaire d'Analyse et Probabilités 29/10/19

- Framework : Finite Element Method (FEM)
- **O Geometrical quality of a mesh**

• Mesh which is not conforming to the boundaries

- Finite Element Method (FEM)
- **O Geometrical quality of a mesh**

• Mesh which is not conforming to the boundaries

Considered equation

$$\begin{aligned} -\Delta u &= f, \text{ in } \Omega \\ u &= 0, \text{ on } \partial \Omega \end{aligned}$$

i.e. the problem

$$\begin{cases} \text{ Find } u \in H^1_0(\Omega) \text{ s.t. :} \\ \Leftrightarrow (\nabla u, \nabla v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} \ \forall v \in H^1_0(\Omega). \end{cases}$$

General framework

$$\begin{cases} \text{Find } u \in V \text{ s.t. :} \\ a(u,v) = l(v) \ \forall v \in V \end{cases}$$

where

- $l(\cdot)$ linear and continuous : $|l(v)| \leq C_1 ||v|| \forall v \in V$
- $a(\cdot, \cdot)$ bilinear continuous : $|a(u, v)| \leq C_2 ||u|| ||v|| \ \forall u, v \in V$

and coercive : $|a(v,v)| \ge C ||v||^2 \ \forall v \in V$

Let
$$V_h = \langle \phi_k \in V : k \in \{1, ..., N\} \rangle \subset V.$$

System (1) will be approximate by

$$\begin{cases} \text{Find } u_h \in V_h \text{ s.t.} :\\ a(u_h, v_h) = l(v_h) \,\forall v_h \in V_h \end{cases} \Leftrightarrow \begin{cases} \text{Find } U_h \in \mathbb{R}^N \text{ s.t.} :\\ A_h U_h = F_h \end{cases}$$

where

$$\begin{cases} A_h = a(\phi_k, \phi_j)_{kj} \\ F_h = l(\phi_k)_k \end{cases}$$

Thus

$$u_h = \sum U_{hk} \phi_k.$$

Framework : Lagrange continuous finite element

- Framework : Finite Element Method (FEM)
- Geometrical quality of a mesh

• Mesh which is not conforming to the boundaries

Questions

Geometrical criterion on the mesh to ensure the convergence?

$$\|u_h - u\| \xrightarrow[h \to 0]{} 0$$

where
$$h := \max_{\text{in mesh} \atop \text{in mesh}} \text{diam}(\text{Cell})$$

> Optimal order in the *a priori* estimates for \mathbb{P}_1

$$\begin{cases} |u - u_h|_1 \leqslant Ch|u|_2, \\ |u - u_h|_0 \leqslant Ch^2|u|_2. \end{cases}$$

Framework : geometrical condition

• Minimum angle condition

≻ dim 2 : Zlámal 68'

 $\min\{\text{angle}\} > \alpha > 0$

• Ciarlet condition

≻ dim n : Ciarlet 78'

$$\frac{h_K}{\rho_K} < \gamma$$

• Maximum angle condition

≻ dim 2 : Babuska-Aziz 76', Barnhill-Gregory 76', Jamet 76'

≻ dim 3 : Krizek 92'

 $\max\{\text{angle}\} < \beta < \pi$

• Local damage

- ≻ dim 2 : Kucera 2016
- ≻ dim n : Duprez-Lleras-Lozinski 2019

Idea of the proof

$$\begin{cases} \text{Find } u \in V \text{ s.t. }: \\ a(u,v) = l(v) \ \forall v \in V \end{cases} (1) \qquad \begin{cases} \text{Find } u_h \in V_h \text{ s.t. }: \\ a(u_h,v_h) = l(v_h) \ \forall v_h \in V_h \end{cases} (2)$$

Lemma (Local interpolation)

For each cell $K \in \mathcal{T}_h$ and $u \in H^2(K)$

$$|u - \mathcal{I}_h u|_{1,K} \leqslant Ch |u|_{K,2},$$

where \mathcal{I}_h is the Lagrange interpolation operator.

Lemma (Céa, see Ern-Guermond's book)

Let u and u_h solution to (1) and (2). Then

$$|u - u_h|_{1,\Omega} \leqslant C \inf_{v_h \in V_h} |u - v_h|_{1,\Omega}.$$

Thus

$$|u-u_h|_{1,\Omega} \leqslant C \inf_{v_h \in V_h} |u-v_h|_{1,\Omega} \leqslant C |u-\mathcal{I}_h u|_{1,\Omega} \leqslant C h |u|_{\Omega,2}.$$

Counter-example [Babuska-Aziz 1976]

Let
$$A_1 = (-1, 0)$$
, $A_2 = (0, 1)$ and $A_3 = (0, \varepsilon)$.

Consider $u(x_1, x_2) = x_1^2$. It holds

$$|u - \mathcal{I}_h u|_{1,K} \ge \frac{1}{\varepsilon}$$

 \rightarrow large interpolation error

Inclusion of meshes [Hannukaimen-Korotov-Krizek 2012]

Michel Duprez

Rule of the mesh in the Finite Element Method

Assume the degenerated cells are isolated :

Local damage on the mesh : exact assumption

Assumption

Let
$$K_1^{deg}, ..., K_I^{deg}$$
 be the degen. cells
 $h_{K_i^{deg}}/\rho_{K_i^{deg}} > c_0.$
Assume that
• $h_{\mathcal{P}_i}/\rho_{\mathcal{P}_i} \leq c_1.$
• $h_{K_{i,j}}/\rho_{K_{i,j}} \leq c_1.$
• $h_{K_i^{nd}}/\rho_{K_i^{nd}} \leq c_1.$
• $\widetilde{\mathcal{P}}_i \cap \widetilde{\mathcal{P}}_j = \emptyset$

• $\#\widetilde{\mathcal{P}}_i \leqslant M$

$\mathcal{P}_{i} := K_{i}^{d} \cup K_{i}^{nd}$ $\widetilde{\mathcal{P}}_{i} := \mathcal{P}_{i} \cup_{j} K_{i,j}$

 x_0

 $K_{i,1}$

 $K_{i,3}$

 $K_{i,2}$

 K^{nd}

 $K_{i,5}$

Theorem (D.-Lleras-Lozinski 2019)

Let $u \in V$ and $u_h \in V_h$ be the solutions to continuous and discrete Systems. Then, under Assumption 1,

 $|u - u_h|_{1,\Omega} \le Ch|u|_{2,\Omega}$ and $|u - u_h|_{0,\Omega} \le Ch^2|u|_{2,\Omega}$.

Modified Lagrange interpolation operator

Definition

For
$$v \in H^2(\Omega)$$
, defined $\widetilde{\mathcal{I}}_h(v) \in V_h$ s.t.

•
$$\widetilde{\mathcal{I}}_h = \mathcal{I}_h \text{ on } K \notin \tilde{\mathcal{P}}_i$$

•
$$\widetilde{\mathcal{I}}_h(x_0) = \operatorname{Ext}(I_{h|K_i^{nd}})(x_0)$$

where \mathcal{I}_h is the standard Lagrange interpolation operator.

Proposition (D.-Lleras-Lozinski 2019)

Under Assumption 1, we have for all $v \in H^2(\Omega) \cup H^1_0(\Omega)$

$$|v - \widetilde{\mathcal{I}}_h(v)|_{1,\Omega} \le Ch|v|_{2,\Omega}.$$

 \succ Use the local interpolation estimate of \mathcal{I}_h on \mathcal{P}_i

Proposition (D.-Lleras-Lozinski 2019)

Under Assumption 1, we have for all $v \in H^2(\Omega) \cup H^1_0(\Omega)$

$$|v - \widetilde{\mathcal{I}}_h(v)|_{1,\Omega} \le Ch|v|_{2,\Omega}.$$

Lemma (Céa, see Ern-Guermond's book)

Let u and u_h solution to (1) and (2). Then

$$|u - u_h|_{1,\Omega} \leqslant C \inf_{v_h \in V_h} |u - v_h|_{1,\Omega}.$$

Thus

$$|u-u_h|_{1,\Omega} \leqslant C \inf_{v_h \in V_h} |u-v_h|_{1,\Omega} \leqslant C |u-\widetilde{\mathcal{I}}_h u|_{1,\Omega} \leqslant C h |u|_{\Omega,2}.$$

Poor conditioning of the system matrix

Proposition (D.-Lleras-Lozinski 2019)

Suppose that the mesh \mathcal{T}_h contains a degenerate cell K^{deg}

$$\rho_{K^{deg}} = \varepsilon, \quad h_{K^{deg}} \geqslant C_1 h.$$

Then the conditioning number associated to the bilinear form a in V_h satisfies

$$\boldsymbol{\kappa}(\boldsymbol{A}) := \|\boldsymbol{A}\|_2 \|\boldsymbol{A}^{-1}\|_2 \ge \frac{C}{h\varepsilon}$$

Idea :

We approximate

$$\begin{cases} \text{Find } u \in V \text{ s.t. :} \\ a(u,v) = l(v) \ \forall v \in V \end{cases}$$
(1)

by the finite element formulation

$$\begin{cases} \text{Find } u_h \in V_h \text{ s.t.} :\\ a_h(u_h, v_h) = l(v_h) \,\forall v_h \in V_h \end{cases}$$
(2)

where the bilinear form a_h is defined for all $u_h, v_h \in V_h$ by

$$egin{aligned} a_h(u_h,v_h) &:= a_{\Omega_h^{nd}}(u_h,v_h) + \sum_i a_{\mathcal{P}_i}(\widetilde{\mathcal{I}}_h u_h,\widetilde{\mathcal{I}}_h v_h) \ &+ \sum_i rac{1}{h_{\mathcal{P}_i}^2}((\operatorname{Id}-\widetilde{\mathcal{I}}_h)u_h,(\operatorname{Id}-\widetilde{\mathcal{I}}_h)v_h)_{\mathcal{P}_i}, \end{aligned}$$

with $\Omega_h^{nd} := (\cup \mathcal{P}_i)^c$.

Theorem (A priori estimate, D.-Lleras-Lozinski 2019)

Let Ω convex and $u \in V$, $u_h \in V_h$ be the solutions to Systems (1) and (2). Then, under Assumption 1, we have ($\varepsilon = 0$ if n = 3)

$$\begin{cases} |u - u_h|_{1,\Omega} \le C_{\varepsilon} h^{1-\varepsilon} |u|_{2,\Omega}, \\ ||u - u_h||_{0,\Omega} \le C_{\varepsilon} h^{2-\varepsilon} |u|_{2,\Omega}. \end{cases}$$

Proposition (Conditioning, D.-Lleras-Lozinski 2019)

Suppose that Assumption 1 holds and the union of cells ω_x attached to each node x of \mathcal{T}_h satisfies

$$c_1 h^n \le |\omega_x| \le c_2 h^n.$$

Then, the conditioning number of the matrix A satisfies

$$\kappa(\boldsymbol{A}) := \|\boldsymbol{A}\|_2 \|\boldsymbol{A}^{-1}\|_2 \leqslant Ch^{-2}.$$

Lemma (Coercivity of a_h)

$$a_h(v_h, v_h) \ge C \|v_h\|_{0,\Omega}^2 \quad \forall v_h \in V_h.$$

Lemma (Continuity of a_h)

 $a_h(u_h, v_h) \leqslant (C/h^2) \|u_h\|_{0,\Omega} \|v_h\|_{0,\Omega} \quad \forall u_h, v_h \in V_h.$

$$\|\boldsymbol{A}\|_{2} = \sup_{\boldsymbol{v}\in\mathbb{R}^{N}} \frac{(\boldsymbol{A}\boldsymbol{v},\boldsymbol{v})}{|\boldsymbol{v}|_{2}^{2}} = \sup_{\boldsymbol{v}\in\mathbb{R}^{N}} \frac{a_{h}(v_{h},v_{h})}{|\boldsymbol{v}|_{2}^{2}} \leqslant Ch^{n} \sup_{v_{h}\in V_{h}} \frac{a_{h}(v_{h},v_{h})}{\|v_{h}\|_{0}^{2}} \leqslant Ch^{n-2}$$
$$\|\boldsymbol{A}^{-1}\|_{2} = \sup_{\boldsymbol{v}\in\mathbb{R}^{N}} \frac{|\boldsymbol{v}|_{2}^{2}}{(\boldsymbol{A}\boldsymbol{v},\boldsymbol{v})} = \sup_{\boldsymbol{v}\in\mathbb{R}^{N}} \frac{|\boldsymbol{v}|_{2}^{2}}{a_{h}(v_{h},v_{h})} \leqslant Ch^{-n} \sup_{v_{h}\in V_{h}} \frac{\|v_{h}\|_{0}^{2}}{a_{h}(v_{h},v_{h})} \leqslant Ch^{-n}$$
Thus

$$\boldsymbol{\kappa}(\boldsymbol{A}) := \|\boldsymbol{A}\|_2 \|\boldsymbol{A}^{-1}\|_2 \leqslant C/h^2.$$

 \square

Equivalent formulation

Proposition (D.-Lleras-Lozinski 2019)

For all $u_h, v_h \in V_h$, it holds

$$\begin{aligned} a_h(u_h, v_h) &= a_{\Omega_h^{nd}}(u_h, v_h) + \sum_i \frac{|\mathcal{P}_i|}{|K_i^{nd}|} a_{K_i^{nd}}(u_h, v_h) \\ &+ \kappa_n \sum_i \frac{|K_i^{deg}|^3}{h_{\mathcal{P}_i}^2 |F_i|^2} [\nabla u_h]_{F_i} \cdot [\nabla v_h]_{F_i} \end{aligned}$$

with $\kappa_n := \frac{2n^2}{(n+1)(n+2)}$.

Let
$$\Omega := (0,1) \times (0,1)$$
 and $f(x,y) = 2\pi^2 \sin(\pi x) \sin(\pi y)$.

Consider the system

$$\begin{cases} \text{ Find } u \in H_0^1(\Omega) \text{ s.t. :} \\ (\nabla u, \nabla v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} \ \forall v \in H_0^1(\Omega). \end{cases}$$

Exact solution : $u(x, y) = \sin(\pi x) \sin(\pi y) \forall (x, y) \in \Omega$.

Cartesian meshes T_h s.t. :

$$h_{K^{deg}} = h \text{ and } \rho_{K^{deg}} \sim h^2.$$

Michel Duprez

2 degenerated cells, alternative scheme

Michel Duprez

5.5 % of degenerated cells standard scheme (left), alternative scheme (right)

Application in biomechanics : generation of patient specific meshes

Conclusion

• New sufficient geometrical conditions

➤ Local damages : optimal convergence

• New operator of interpolation

> Convergence of a operator of interpol. \neq convergence to the solution

- Alternative formulation for a good conditioning of the system matrix
 > Quasi optimal convergence
- Necessary and sufficient geometrical conditions remain open
 > Inclusion of meshes ?

- Framework : Finite Element Method (FEM)
- **O Geometrical quality of a mesh**

• Mesh which is not conforming to the boundaries

Fictitious domain methods : non-matching meshes

Previous results

- First work
 - ≻ Saul'ev 63'
- XFEM
 - ➤ Moes-Bechet-Tourbier 2006
 - ➤ Haslinger-Renard 2009
- CutFEM
 - ≻ Burman-Hansbo 2010-2014≻ Lozinski 2019

Methods

- Extended finite element space
- Standard penalizations
- Nitsche penalizations
- Ghost penalty
- Lagrange multipliers

Framework : previous results

Lagrange multipliers approximated by \mathbb{P}_0 -FE on the cut triangles \mathcal{T}_h^γ :

Find $u_h \in V_h$, $\lambda_h \in W_h = \{\mu_h \in L^2(\Omega_h^{\gamma}) : \mu_{h|T} \in \mathbb{P}_0(T) \forall T \in \mathcal{T}_h^{\Gamma}\}$:

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h + \int_{\Gamma} \lambda_h v_h = \int_{\Omega} f v_h \qquad \forall v_h \in V_h$$
$$\int_{\Gamma} \mu_h u_h = \sigma h \sum_{E \in \mathcal{T}_h^{\gamma}} [\lambda_h] [\mu_h] \qquad \forall \mu_h \in W_h$$

≻ Burman-Hansbo 2010

Difficulty :

The actual formulation contain a integral on the real boundary.

ϕ -FEM : formal approach

Initial problem

Consider a domain $\boldsymbol{\Omega}$ and

$$\begin{cases} \text{Find } u \text{ s.t. :} \\ -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

ϕ -FEM (formal) approach

Assume that Ω and Γ are given by a **level-set** function ϕ :

$$\Omega := \{\phi < 0\} \text{ and } \Gamma := \{\phi = 0\}.$$

Consider the problem

$$\begin{cases} Find v \text{ s.t. :} \\ -\Delta(\phi v) = f \text{ in } \Omega \end{cases}$$

Then $u := \phi v$ is solution to the initial problem.

4

ϕ -FEM : weak formulation

Assume that Ω and Γ are given by a level-set function ϕ :

$$\Omega := \{ \phi < 0 \} \text{ and } \Gamma := \{ \phi = 0 \}.$$

Suppose that ϕ is near Γ as the signed distance to Γ . Consider the finite element approximation

$$\int_{\Omega_h} \nabla(\phi v_h) \cdot \nabla(\phi w_h) - \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi v_h) \phi w_h + \frac{\text{Stab.}}{\text{Term}} = \int_{\Omega_h} f \phi w_h \ \forall w_h \in W_h,$$

Then $u_h := v_h \phi$ as approximation of the initial problem.

ϕ -FEM : a priori error estimates

Consider the finite element approximation : $a_h(v_h, w_h) = l_h(w_h) \ \forall w_h \in W_h$, where

$$\begin{cases} a_h(v_h, w_h) = \int_{\Omega_h} \nabla(\phi_h v_h) \cdot \nabla(\phi_h w_h) - \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi_h v_h) \phi_h v_h + G_h^1(\tilde{u}_h, v_h) \\ l_h(w_h) = \int_{\Omega_h} f \phi_h w_h + G_h^2(w_h), \end{cases}$$

with $\phi_h = I_h(\phi_h)$, G_h^1 and G_h^2 stands for the the **ghost penalty** given by

$$G_{h}^{1}(v_{h}, w_{h}) = \sigma h \sum_{E \in \mathcal{F}_{\Gamma}} \int_{E} \left[\frac{\partial}{\partial n} (\phi_{h} v_{h}) \right] \left[\frac{\partial}{\partial n} (\phi_{h} w_{h}) \right] + \sigma h^{2} \sum_{T \in \mathcal{T}_{h}^{\Gamma}} \int_{T} \Delta(\phi_{h} v_{h}) \Delta(\phi_{h} w_{h})$$
$$G_{h}^{2}(w_{h}) = -\sigma h^{2} \sum_{T \in \mathcal{T}_{h}^{\Gamma}} \int_{T} f \Delta(\phi_{h} w_{h})$$

and

$$\begin{cases} \mathcal{T}_h^{\Gamma} = \{T \in \mathcal{T}_h : T \cap \Gamma_h \neq \varnothing\} & (\Gamma_h = \{\phi_h = 0\}); \\ \mathcal{F}_{\Gamma} = \{E \text{ (an internal edge of } \mathcal{T}_h) \text{ such that } \exists T \in \mathcal{T}_h : T \cap \Gamma_h \neq \varnothing \text{ and } E \in \partial T\}. \end{cases}$$

Continuous problem $a(u, w) = l(w) \ \forall w \in V$ Finite element formulation $a_h(v_h, w_h) = l_h(w_h) \ \forall \ w_h \in V_h^{(k)} \subset V$

Theorem (D.-Lozinski 2019)

Suppose that the mesh \mathcal{T}_h is uniform (with some weak assumptions), and $f \in H^k(\Omega_h \cup \Omega)$. Let $u \in H^{k+2}(\Omega)$ be the continuous solution and $w_h \in V_h^{(k)}$ be the discret solution. Denoting $u_h := \phi_h w_h$, it holds

 $|u - u_h|_{1,\Omega \cap \Omega_h} \le Ch^k ||f||_{k,\Omega \cup \Omega_h}$

with $C = C(\phi)$. Moreover, supposing $\Omega \subset \Omega_h$

$$||u - u_h||_{0,\Omega} \le Ch^{k+1/2} ||f||_{k,\Omega_h}.$$

Lemma (Hardy inequality, D.-Lozinski 2019)

We assume that the domain Ω is given by the level-set ϕ regular enough. Then, for any $u \in H^{k+1}(\mathcal{O})$ vanishing on Γ ,

$$\left\|\frac{u}{\phi}\right\|_{k,\mathcal{O}} \le C \|u\|_{k+1,\mathcal{O}}.$$

Lemma (Local interpolation, Ern-Guermond's book)

For $k \in \mathbb{N}^*$, each cell $K \in \mathcal{T}_h$ and $u \in H^2(K)$

$$|u - \mathcal{I}_h u|_{1,K} \leqslant Ch^k |u|_{K,k+1},$$

where \mathcal{I}_h is the Lagrange interpolation operator.

Theorem (Conditioning)

Assume that \mathcal{T}_h is uniform (and satisfies the assumptions). Then the condition number $\kappa(\mathbf{A}) := \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$ of the matrix \mathbf{A} associated to the bilinear form a_h on $V_h^{(k)}$ satisfies

$$\kappa(\mathbf{A}) \le Ch^{-2}.$$

Here, $\|\cdot\|_2$ stands for the matrix norm associated to the vector 2-norm $|\cdot|_2$.

Let Ω be the circle of radius $\sqrt{2}/4$ centered at the point (0.5, 0.5) and the surrounding domain $\mathcal{O} = (0, 1)^2$. The level-set function ϕ giving this domain Ω is taken as

$$\phi(x,y) = (x - 1/2)^2 - (y - 1/2)^2 - 1/8.$$

We use ϕ -FEM to solve numerically Poisson-Dirichlet problem with the exact solution given by

$$u(x,y) = \phi(x,y) \times \exp(x) \times \sin(2\pi y).$$

FIGURE – Relative errors of ϕ -FEM for k = 1. Left : ϕ -FEM with ghost penalty $\sigma = 20$; Right : ϕ -FEM without ghost penalty ($\sigma = 0$).

FIGURE – Condition numbers for ϕ -FEM k = 1. Left : ϕ -FEM with ghost penalty $\sigma = 20$; Right : ϕ -FEM without ghost penalty ($\sigma = 0$).

FIGURE – Influence of the ghost penalty parameter σ on the relative errors for ϕ -FEM k = 1. Left : $||u - u_h||_{0,\Omega_h} / ||u||_{0,\Omega_h}$; Right : $|u - u_h|_{1,\Omega_h} / |u|_{1,\Omega_h}$.

FIGURE – Relative errors of ϕ -FEM. Left : k = 2; Right : k = 3.

FIGURE – Influence of the ghost penalty parameter σ on the relative errors for ϕ -FEM and k = 2. Left : $||u - u_h||_{0,\Omega} / ||u||_{0,\Omega}$; Right : $||u - u_h||_{1,\Omega} / |u||_{1,\Omega}$.

We now choose domain Ω given by the level-set

$$\phi(x,y) = -(y - \pi x - \pi) \times (y + x/pi - \pi) \times (y - \pi x + \pi) \times (y + x/pi + \pi).$$

It is thus the rectangle with corners $\left(\frac{2\pi^2}{\pi^2 + 1}, \frac{\pi^3 - \pi}{\pi^2 + 1}\right), (0,\pi), \left(-\frac{2\pi^2}{\pi^2 + 1}, -\frac{\pi^3 - \pi}{\pi^2 + 1}\right),$

 $(0, -\pi)$. We use ϕ -FEM to solve numerically Poisson-Dirichlet problem in Ω with the right-hand side given by f(x, y) = 1.

FIGURE – Relative errors of ϕ -FEM. Left : k = 2; Right : k = 3. The reference solution u_{ref} is computed by a standard FEM on a sufficiently fine fitted mesh on Ω .

Conclusion

Results

- **Optimal convergence** of ϕ -FEM in the H^1 semi-norm
- Quasi-optimal convergence of φ-FEM in the L² norm
 > Optimal convergence numerically
- Discrete problem well conditioned

Perspectives

- Neumann or Robin boundary conditions
 First results with a mixed formulation
- Dynamic equation : heat equation

Thanks for your attention !

ϕ -FEM : mesh assumptions

Assumption

The approximate boundary Γ_h can be covered by element patches $\{\Pi_i\}_{i=1,...,N_{\Pi}}$ having the following properties :

- Each patch Π_i is a connected set composed of a mesh element T_i ∈ T_h \ T_h^Γ and some mesh elements cut by Γ_h. More precisely, Π_i = T_i ∪ Π_i^Γ with Π_i^Γ ⊂ T_h^Γ containing at most M mesh elements;
- $\mathcal{T}_h^{\Gamma} = \cup_{i=1}^{N_{\Pi}} \Pi_i^{\Gamma}$;
- Π_i and Π_j are disjoint if $i \neq j$.

Assumption

The boundary Γ can be covered by open sets \mathcal{O}_i , $i = 1, \ldots, I$ and one can introduce on every \mathcal{O}_i local coordinates ξ_1, \ldots, ξ_d with $\xi_d = \phi$ such that all the partial derivatives $\partial^{\alpha} \xi / \partial x^{\alpha}$ and $\partial^{\alpha} x / \partial \xi^{\alpha}$ up to order k + 1 are bounded by some $C_0 > 0$. Morover, $|\phi| \ge m$ on $\mathcal{O} \setminus \bigcup_{i=1,\ldots,I} \mathcal{O}_i$ with some m > 0.