Optimal control of reaction-diffusion systems

Michel Duprez

Laboratoire de Mathématiques de Besançon

June 3, 2013

Journée de l’Ecole Doctorale Carnot-Pasteur

Thesis directors : AMMAR KHODJA Farid, ANDREIANOV Boris, CHOULY Franz.
Plan

1. Introduction

2. Property of solutions for a reaction-diffusion equation
 - Infinitesimal generator of a semigroup
 - General Case
 - Application

3. Optimal Control

4. Conclusions and perspectives
Plan

1. introduction
2. Property of solutions for a reaction-diffusion equation
3. Optimal Control
4. Conclusions and perspectives
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009]:

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1(1 - y_1/k_1)y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3)y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2(1 - y_2/k_2)y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3)y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x,0) &= y_{i,0} \quad \forall \ 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \quad \forall \ 1 \leq i \leq 3
\end{align*}
\]

(1)

where

1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. $d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j}$ are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009] :

$$\begin{align*}
\frac{\partial}{\partial t} y_1 &= d_1 \frac{\partial^2}{\partial x^2} y_1 + a_1 (1 - y_1 / k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\frac{\partial}{\partial t} y_2 &= d_2 \frac{\partial^2}{\partial x^2} y_2 + a_2 (1 - y_2 / k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\frac{\partial}{\partial t} y_3 &= d_3 \frac{\partial^2}{\partial x^2} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \quad \forall \ 1 \leq i \leq 3 \\
\frac{\partial}{\partial n} y_i &= 0 \quad \forall \ 1 \leq i \leq 3
\end{align*}$$

(1)

where

1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. $d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j}$ are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009]

$$\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 (1 - y_1 / k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 (1 - y_2 / k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \forall 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \forall 1 \leq i \leq 3
\end{align*}$$

(1)

where

1. \(y_1\) is the density of tumor cells,
2. \(y_2\) is the density of normal cells,
3. \(y_3\) is the drug concentration,
4. \(u\) is the rate at which the drug is being injected,
5. \(d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j}\) are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009]:

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 (1 - y_1 / k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 (1 - y_2 / k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \forall 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \forall 1 \leq i \leq 3
\end{align*}
\]

(1)

where

1. \(y_1 \) is the density of tumor cells,
2. \(y_2 \) is the density of normal cells,
3. \(y_3 \) is the drug concentration,
4. \(u \) is the rate at which the drug is being injected,
5. \(d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j} \) are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009]:

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 \left(1 - \frac{y_1}{k_1} \right) y_1 - \left(\alpha_{1,2} y_2 + \kappa_{1,3} y_3 \right) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 \left(1 - \frac{y_2}{k_2} \right) y_2 - \left(\alpha_{2,1} y_1 + \kappa_{2,3} y_3 \right) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \forall 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \forall 1 \leq i \leq 3
\end{align*}
\]

(1)

where

1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. d_i, a_i, k_i, $\alpha_{i,j}$, $\kappa_{i,j}$ are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009] :

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 (1 - y_1 / k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 (1 - y_2 / k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \quad \forall \ 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \quad \forall \ 1 \leq i \leq 3
\end{align*}
\]

(1)

where

1. \(y_1 \) is the density of tumor cells,
2. \(y_2 \) is the density of normal cells,
3. \(y_3 \) is the drug concentration,
4. \(u \) is the rate at which the drug is being injected,
5. \(d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j} \) are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009] :

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 (1 - y_1/k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 (1 - y_2/k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \quad \forall \ 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \quad \forall \ 1 \leq i \leq 3
\end{align*}
\] (1)

where

1. \(y_1 \) is the density of tumor cells,
2. \(y_2 \) is the density of normal cells,
3. \(y_3 \) is the drug concentration,
4. \(u \) is the rate at which the drug is being injected,
5. \(d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j} \) are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009] :

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 (1 - y_1/k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 (1 - y_2/k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \forall 1 \leq i \leq 3 \\
\partial_n y_i &= 0 \forall 1 \leq i \leq 3
\end{align*}
\]

(1)

where

1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. d_i, a_i, k_i, $\alpha_{i,j}$, $\kappa_{i,j}$ are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009] :

\begin{equation}
\begin{cases}
\partial_t y_1 = d_1 \partial_{xx} y_1 + a_1 (1 - y_1 / k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 = d_2 \partial_{xx} y_2 + a_2 (1 - y_2 / k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 = d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) = y_{i,0} \forall \ 1 \leq i \leq 3 \\
\partial_n y_i = 0 \forall \ 1 \leq i \leq 3
\end{cases}
\end{equation}

where

1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. $d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j}$ are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009]:

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 (1 - y_1 / k_1) y_1 - (\alpha_{1,2} y_2 + \kappa_{1,3} y_3) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 (1 - y_2 / k_2) y_2 - (\alpha_{2,1} y_1 + \kappa_{2,3} y_3) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \quad \forall \ 1 \leq i \leq 3 \ \text{initial data} \\
\partial_n y_i &= 0 \quad \forall \ 1 \leq i \leq 3
\end{align*}
\]

(1)

where

1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. $d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j}$ are known constants.
In this presentation we study a model for treatment of brain tumors of [Chakrabarty, Hanson 2009]:

\[
\begin{align*}
\partial_t y_1 &= d_1 \partial_{xx} y_1 + a_1 \left(1 - \frac{y_1}{k_1}\right) y_1 - \left(\frac{\alpha_{1,2} y_2}{\kappa_{1,3} y_3} + \kappa_{1,3} y_3\right) y_1 \\
\partial_t y_2 &= d_2 \partial_{xx} y_2 + a_2 \left(1 - \frac{y_2}{k_2}\right) y_2 - \left(\frac{\alpha_{2,1} y_1 + \kappa_{2,3} y_3}{\kappa_{2,3} y_3}\right) y_2 \\
\partial_t y_3 &= d_3 \partial_{xx} y_3 - a_3 y_3 + u \\
y_i(x, 0) &= y_{i,0} \forall 1 \leq i \leq 3 \text{ initial data} \\
\partial_n y_i &= 0 \forall 1 \leq i \leq 3 \text{ boundary conditions}
\end{align*}
\]

where
1. y_1 is the density of tumor cells,
2. y_2 is the density of normal cells,
3. y_3 is the drug concentration,
4. u is the rate at which the drug is being injected,
5. $d_i, a_i, k_i, \alpha_{i,j}, \kappa_{i,j}$ are known constants.
Goal

- At first we study the **existence** of a **unique** mathematical solution of our system for every injection u.
- And in a second time, we suppose that we "control" the injection u and we want:
 1. to minimize the density of tumor cells y_1 during all the treatment,
 2. to minimize the injection u during all the treatment,
 3. density of tumor cells y_1 near zero at the time T,
 4. the drug concentration y_3 near zero at the time T.
Goal

- At first we study the **existence** of a **unique** mathematical solution of our system for every injection u.
- And in a second time, we suppose that we "**control**" the injection u and we want:
 1. to minimize the density of tumor cells y_1 during all the treatment,
 2. to minimize the injection u during all the treatment,
 3. density of tumor cells y_1 near zero at the time T,
 4. the drug concentration y_3 near zero at the time T.
- At first we study the **existence** of a **unique** mathematical solution of our system for every injection u.
- And in a second time, we suppose that we "control" the injection u and we want:
 1. to minimize the density of tumor cells y_1 during all the treatment,
 2. to minimize the injection u during all the treatment,
 3. density of tumor cells y_1 near zero at the time T,
 4. the drug concentration y_3 near zero at the time T.
Goal

- At first we study the existence of a unique mathematical solution of our system for every injection u.
- And in a second time, we suppose that we "control" the injection u and we want:
 1. to minimize the density of tumor cells y_1 during all the treatment,
 2. to minimize the injection u during all the treatment,
 3. density of tumor cells y_1 near zero at the time T,
 4. the drug concentration y_3 near zero at the time T.
Goal

- At first we study the existence of a unique mathematical solution of our system for every injection u.
- And in a second time, we suppose that we "control" the injection u and we want:

 1. to minimize the density of tumor cells y_1 during all the treatment,
 2. to minimize the injection u during all the treatment,
 3. density of tumor cells y_1 near zero at the time T,
 4. the drug concentration y_3 near zero at the time T.
Goal

- At first we study the **existence** of a **unique** mathematical solution of our system for every injection u.
- And in a second time, we suppose that we "control" the injection u and we want :
 1. to minimize the density of tumor cells y_1 during all the treatment,
 2. to minimize the injection u during all the treatment,
 3. density of tumor cells y_1 near zero at the time T,
 4. the drug concentration y_3 near zero at the time T.
General framework

Let \(\mathcal{W} \) a Banach space. We want to study first the system

\[
\begin{align*}
\frac{\partial y(t)}{\partial t} + Ay(t) &= f(y(t), t) \\
y(0) &= y_0.
\end{align*}
\]

(2)

where \(A \) is a linear operator on \(\mathcal{W} \), \(f \in L^1(0, T; \mathcal{W}) \) and \(y_0 \in \mathcal{W} \).

We say that (2) is "semilinear" because:

1. \(A \) is linear,
2. \(f \) is not linear.

If \(A = \partial_{xx} \), we say that (2) is a "reaction-diffusion" equation:

1. "reaction" for \(\partial_t \),
2. "diffusion" for \(\partial_{xx} \).
General framework

Let \mathcal{W} a Banach space. We want to study first the system

\begin{equation}
\left\{ \begin{array}{l}
\frac{\partial y(t)}{\partial t} + Ay(t) = f(y(t), t) \\
y(0) = y_0.
\end{array} \right.
\end{equation} (2)

where A is a linear operator on \mathcal{W}, $f \in L^1(0, T; \mathcal{W})$ and $y_0 \in \mathcal{W}$. We say that (2) is "semilinear" because:

1. A is linear,
2. f is not linear.

If $A = \partial_{xx}$, we say that (2) is a "reaction-diffusion" equation:

- "reaction" for ∂_t,
- "diffusion" for ∂_{xx}.
Let \mathcal{W} a Banach space. We want to study first the system

$$\left\{ \begin{array}{l} \frac{\partial y(t)}{\partial t} + Ay(t) = f(y(t), t) \\ y(0) = y_0. \end{array} \right. \quad (2)$$

where A is a linear operator on \mathcal{W}, $f \in L^1(0, T; \mathcal{W})$ and $y_0 \in \mathcal{W}$. We say that (2) is "semilinear" because:

1. A is linear,
2. f is not linear.

If $A = \partial_{xx}$, we say that (2) is a "reaction-diffusion" equation:

1. "reaction" for ∂_t,
2. "diffusion" for ∂_{xx}.
General framework

Let \mathcal{W} a Banach space. We want to study first the system

$$
\begin{cases}
\frac{\partial y(t)}{\partial t} + Ay(t) = f(y(t), t) \\
y(0) = y_0.
\end{cases}
$$

where A is a linear operator on \mathcal{W}, $f \in L^1(0, T; \mathcal{W})$ and $y_0 \in \mathcal{W}$. We say that (2) is "semilinear" because:

1. A is linear,
2. f is not linear.

If $A = \partial_{xx}$, we say that (2) is a "reaction-diffusion" equation:

1. "reaction" for ∂_t,
2. "diffusion" for ∂_{xx}.
General framework

Let \mathcal{W} a Banach space. We want to study first the system

$$\begin{cases}
\frac{\partial y(t)}{\partial t} + Ay(t) = f(y(t), t) \\
y(0) = y_0.
\end{cases}$$

(2)

where A is a linear operator on \mathcal{W}, $f \in L^1(0, T; \mathcal{W})$ and $y_0 \in \mathcal{W}$.

We say that (2) is "semilinear" because:

1. A is linear,
2. f is not linear.

If $A = \partial_{xx}$, we say that (2) is a "reaction-diffusion" equation:

1. "reaction" for ∂_t,
2. "diffusion" for ∂_{xx}.

Let \(\mathcal{W} \) a Banach space. We want to study first the system

\[
\begin{align*}
\frac{\partial y(t)}{\partial t} + Ay(t) &= f(y(t), t) \\
y(0) &= y_0.
\end{align*}
\]

(2)

where \(A \) is a linear operator on \(\mathcal{W} \), \(f \in L^1(0, T; \mathcal{W}) \) and \(y_0 \in \mathcal{W} \).

We say that (2) is "semilinear" because:

1. \(A \) is linear,
2. \(f \) is not linear.

If \(A = \partial_{xx} \), we say that (2) is a "reaction-diffusion" equation:

1. "reaction" for \(\partial_t \),
2. "diffusion" for \(\partial_{xx} \).
Let \mathcal{W} a Banach space. We want to study first the system

$$
\begin{cases}
\frac{\partial y(t)}{\partial t} + Ay(t) = f(y(t), t) \\
y(0) = y_0.
\end{cases}
$$

(2)

where A is a linear operator on \mathcal{W}, $f \in L^1(0, T; \mathcal{W})$ and $y_0 \in \mathcal{W}$. We say that (2) is "semilinear" because:

1. A is linear,
2. f is not linear.

If $A = \partial_{xx}$, we say that (2) is a "reaction-diffusion" equation:

1. "reaction" for ∂_t,
2. "diffusion" for ∂_{xx}.
Plan

1. introduction

2. Property of solutions for a reaction-diffusion equation
 - Infinitesimal generator of a semigroup
 - General Case
 - Application

3. Optimal Control

4. Conclusions and perspectives
DEFINITION

A one parameter family \(S(t) \), \(0 \leq t \leq \infty \), of bounded linear operators from \(\mathcal{W} \) into \(\mathcal{W} \) is a \(C_0 \) semigroup of linear operators on \(\mathcal{W} \) if

1. \(S(0) = I \),
2. \(S(s + t) = S(s)S(t) \) for every \(t, s \geq 0 \).
3. \(\forall x \in \mathcal{W} \lim_{t \to 0} \| S(t)x - x \|_\mathcal{W} = 0 \).

An operator \(A \) is the infinitesimal generator of the semigroup \(S(t) \) if

\[
D(A) = \left\{ x \in \mathcal{W} : \lim_{t \to 0} \frac{S(t)x - x}{t} \text{ exists} \right\} \quad \text{and} \quad A x = \lim_{t \to 0} \frac{S(t)x - x}{t}
\]
Definition

A one parameter family $S(t)$, $0 \leq t \leq \infty$, of bounded linear operators from \mathcal{W} into \mathcal{W} is a C_0 semigroup of linear operators on \mathcal{W} if

1. $S(0) = I$,
2. $S(s + t) = S(s)S(t)$ for every $t, s \geq 0$.
3. $\forall x \in \mathcal{W} \lim_{t \to 0} \|S(t)x - x\|_\mathcal{W} = 0$.

An operator A is the infinitesimal generator of the semigroup $S(t)$ if

$$D(A) = \left\{ x \in \mathcal{W} : \lim_{t \to 0} \frac{S(t)x - x}{t} \text{ exists} \right\}$$

and

$$Ax = \lim_{t \to 0} \frac{S(t)x - x}{t}$$
Definition (P. Meyer-Nieberg)

An ordered set \((M, \leq)\) is a *lattice* if for all \(x, y \in M\) \(\sup(x, y)\) and \(\inf(x, y)\) exist and for all \(x, y \in E\)

\[
|x|_E \leq |y|_E \Rightarrow \|x\|_E \leq \|y\|_E, \tag{3}
\]

where \(|y|_E = \sup(y, -y)\) \(\forall y \in E\).

We suppose that \(\mathcal{W}\) and \(\mathcal{V} := D(A)\) are Banach lattices.

Definition

A operator \(A\) is called *positive*, if

\[A\mathcal{W}^+ \subset \mathcal{W}^+.\]

And a \(C_0\) semigroup \((S(t))_{t \geq 0}\) is called *positive*, if \(S(t)\) is positive for all \(t \geq 0\).
DEFINITION (P. Meyer-Nieberg)

An ordered set (M, \leq) is a *lattice* if for all $x, y \in M$ $\sup(x, y)$ and $\inf(x, y)$ exist and for all $x, y \in E$

$$|x|_E \leq |y|_E \Rightarrow \|x\|_E \leq \|y\|_E,$$

(3)

where $|y|_E = \sup(y, -y) \forall y \in E$.

We suppose that \mathcal{W} and $\mathcal{V} := D(A)$ are Banach lattices.

DEFINITION

A operator A is called *positive*, if

$$A\mathcal{W}^+ \subset \mathcal{W}^+.$$

And a C_0 semigroup $(S(t))_{t \geq 0}$ is called *positive*, if $S(t)$ is positive for all $t \geq 0$.
Definition (P. Meyer-Nieberg)

An ordered set \((M, \leq)\) is a **lattice** if for all \(x, y \in M\) \(\sup(x, y)\) and \(\inf(x, y)\) exist and for all \(x, y \in E\)

\[
|x|_E \leq |y|_E \Rightarrow \|x\|_E \leq \|y\|_E,
\]

where \(|y|_E = \sup(y, -y)\) \(\forall y \in E\).

We suppose that \(\mathcal{W}\) and \(\mathcal{V} := D(A)\) are Banach lattices.

Definition

A operator \(A\) is called **positive**, if

\[
A\mathcal{W}^+ \subset \mathcal{W}^+.
\]

And a \(C_0\) semigroup \((S(t))_{t \geq 0}\) is called **positive**, if \(S(t)\) is positive for all \(t \geq 0\).
The function $f : \mathcal{W} \times \mathbb{R}^+ \to \mathcal{W}$ and A satisfies:

1. f is of class C^1

2. there exists $\lambda > 0$ and $y_{\text{min}}, y_{\text{max}} \in \mathcal{W}$ with $Ay_{\text{min}} = Ay_{\text{max}} = 0$ such that:

 $(y \in C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \text{ and } y_{\text{min}} \leq y \leq y_{\text{max}})$

 $\Rightarrow (\lambda y_{\text{min}}(t) \leq f(y(t), t) + \lambda y(t) \leq \lambda y_{\text{max}}(t))$

3. A infinitesimal generator of a C_0 positive semigroup $(S_A(t))_t$

THEOREM (D. et al, 13')

For all $T > 0$, $y_{\text{min}} \leq y_0 \leq y_{\text{max}}$, the system (2) has a unique sol. in $C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A))$ and $y_{\text{min}} \leq y \leq y_{\text{max}}$.
CONDITION

The function $f : \mathcal{W} \times \mathbb{R}^+ \to \mathcal{W}$ and A satisfies:

1. f is of class C^1
2. There exists $\lambda > 0$ and $y_{\min}, y_{\max} \in \mathcal{W}$ with $Ay_{\min} = Ay_{\max} = 0$ such that:

 $\left(y \in C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \text{ and } y_{\min} \leq y \leq y_{\max} \right) \Rightarrow \left(\lambda y_{\min}(t) \leq f(y(t), t) + \lambda y(t) \leq \lambda y_{\max}(t) \right)$

3. An infinitesimal generator of a C_0 positive semigroup $(S_A(t))_t$

THEOREM (D. et al, 13')

For all $T > 0$, $y_{\min} \leq y_0 \leq y_{\max}$, the system (2) has a unique sol. in $C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A))$ and $y_{\min} \leq y \leq y_{\max}$.
CONDITION

The function \(f : \mathcal{W} \times \mathbb{R}^+ \to \mathcal{W} \) and \(A \) satisfies:

1. \(f \) is of class \(C^1 \)
2. there exists \(\lambda > 0 \) and \(y_{\text{min}}, y_{\text{max}} \in \mathcal{W} \) with \(Ay_{\text{min}} = Ay_{\text{max}} = 0 \) such that:

 \(y \in C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \) and \(y_{\text{min}} \leq y \leq y_{\text{max}} \)

 \(\Rightarrow (\lambda y_{\text{min}}(t) \leq f(y(t), t) + \lambda y(t) \leq \lambda y_{\text{max}}(t)) \)
3. \(A \) infinitesimal generator of a \(C_0 \) positive semigroup \((S_A(t))_t\)

THEOREM (D. et al, 13’)

For all \(T > 0, y_{\text{min}} \leq y_0 \leq y_{\text{max}} \), the system (2) has a unique sol. in

\(C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \) and \(y_{\text{min}} \leq y \leq y_{\text{max}} \).
CONDITION

The function $f : \mathcal{W} \times \mathbb{R}^+ \to \mathcal{W}$ and A satisfies:

1. f is of class C^1
2. there exists $\lambda > 0$ and $y_{min}, y_{max} \in \mathcal{W}$ with $Ay_{min} = Ay_{max} = 0$ such that:

 \[(y \in C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \text{ and } y_{min} \leq y \leq y_{max}) \Rightarrow (\lambda y_{min}(t) \leq f(y(t), t) + \lambda y(t) \leq \lambda y_{max}(t))\]
3. -A infinitesimal generator of a C_0 positive semigroup $(S_A(t))_t$

THEOREM (D. et al, 13’)

For all $T > 0$, $y_{min} \leq y_0 \leq y_{max}$, the system (2) has a unique sol. in $C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A))$ and $y_{min} \leq y \leq y_{max}$.
CONDITION

The function \(f : \mathcal{W} \times \mathbb{R}^+ \rightarrow \mathcal{W} \) and \(A \) satisfies:

1. \(f \) is of class \(C^1 \)
2. there exists \(\lambda > 0 \) and \(y_{\text{min}}, y_{\text{max}} \in \mathcal{W} \) with \(Ay_{\text{min}} = Ay_{\text{max}} = 0 \) such that:
 \[
 (y \in C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \text{ and } y_{\text{min}} \leq y \leq y_{\text{max}}) \Rightarrow (\lambda y_{\text{min}}(t) \leq f(y(t), t) + \lambda y(t) \leq \lambda y_{\text{max}}(t))
 \]
3. A infinitesimal generator of a \(C_0 \) positive semigroup \((S_A(t))_t\)

THEOREM (D. et al, 13’)

*For all \(T > 0, y_{\text{min}} \leq y_0 \leq y_{\text{max}}, \) the system (2) has a unique sol. in \(C^1([0, T]; \mathcal{W}) \cap C([0, T]; D(A)) \) and \(y_{\text{min}} \leq y \leq y_{\text{max}}.\)
Consider $A_\lambda = A + \lambda I_d$ and $f_\lambda = f + \lambda I_d$.
If a solution y verifies

$$ y(t) = e^{-tA_\lambda} y_0 + \int_0^t e^{-(t-s)A_\lambda} f_\lambda(y(s), s) \, ds $$

then
Consider $A_\lambda = A + \lambda Id$ and $f_\lambda = f + \lambda Id$.

If a solution y verifies

$$y(t) = e^{-tA_\lambda} y_0 + \int_0^t e^{-(t-s)A_\lambda} f_\lambda(y(s), s)ds,$$

then

$$\frac{\partial y(t)}{\partial t} = -A_\lambda e^{-tA_\lambda} y_0 + \frac{\partial}{\partial t} e^{-tA_\lambda} \int_0^t e^{sA_\lambda} f_\lambda(y(s), s)ds.$$
Consider $A_{\lambda} = A + \lambda I_d$ and $f_{\lambda} = f + \lambda I_d$.

If a solution y verifies

\[
\text{"}y(t) = e^{-t A_{\lambda}} y_0 + \int_0^t e^{-(t-s) A_{\lambda}} f_{\lambda}(y(s), s) ds\text{"},
\]

then

\[
\frac{\partial y(t)}{\partial t} = -A_{\lambda} e^{-t A_{\lambda}} y_0 + \frac{\partial}{\partial t} e^{-t A_{\lambda}} \int_0^t e^{s A_{\lambda}} f_{\lambda}(y(s), s) ds
\]

\[
= -A_{\lambda} e^{-t A_{\lambda}} y_0 - A_{\lambda} e^{-t A_{\lambda}} \int_0^t e^{s A_{\lambda}} f_{\lambda}(y(s), s) ds
\]

\[
+ e^{t A_{\lambda}} e^{-t A_{\lambda}} f_{\lambda}(y(t), t)\]

\[
= -A_{\lambda} e^{-t A_{\lambda}} y_0 - A_{\lambda} e^{-t A_{\lambda}} \int_0^t e^{s A_{\lambda}} f_{\lambda}(y(s), s) ds
\]
Consider $A_{\lambda} = A + \lambda I_d$ and $f_{\lambda} = f + \lambda I_d$.

If a solution y verifies

$$y(t) = e^{-tA_{\lambda}} y_0 + \int_0^t e^{-(t-s)A_{\lambda}} f_{\lambda}(y(s), s) ds$$,

then

$$\frac{\partial y(t)}{\partial t} = -A_{\lambda} e^{-tA_{\lambda}} y_0 + \frac{\partial}{\partial t} e^{-tA_{\lambda}} \int_0^t e^{sA_{\lambda}} f_{\lambda}(y(s), s) ds$$

$$= -A_{\lambda} e^{-tA_{\lambda}} y_0 - A_{\lambda} e^{-tA_{\lambda}} \int_0^t e^{sA_{\lambda}} f_{\lambda}(y(s), s) ds + e^{-tA_{\lambda}} e^{tA_{\lambda}} f_{\lambda}(y(t), t)$$

$$= 1$$
Consider $A_\lambda = A + \lambda I_d$ and $f_\lambda = f + \lambda I_d$.

If a solution y verifies

$$y(t) = e^{-tA_\lambda} y_0 + \int_0^t e^{-(t-s)A_\lambda} f_\lambda(y(s), s) ds$$,

then

$$\frac{\partial y(t)}{\partial t} = -A_\lambda e^{-tA_\lambda} y_0 + \frac{\partial}{\partial t} e^{-tA_\lambda} \int_0^t e^{sA_\lambda} f_\lambda(y(s), s) ds$$

$$= -A_\lambda e^{-tA_\lambda} y_0 - A_\lambda e^{-tA_\lambda} \int_0^t e^{sA_\lambda} f_\lambda(y(s), s) ds + e^{-tA_\lambda} e^{tA_\lambda} f_\lambda(y(t), t) = 1$$

$$= -A_\lambda y(t) + f_\lambda(y(t), t)$$
Consider $A_\lambda = A + \lambda I$ and $f_\lambda = f + \lambda I$.

If a solution y verifies

$$ y(t) = e^{-tA_\lambda} y_0 + \int_0^t e^{-(t-s)A_\lambda} f_\lambda(y(s), s)ds $$

then

$$ \frac{\partial y(t)}{\partial t} = -A_\lambda e^{-tA_\lambda} y_0 + \frac{\partial}{\partial t} e^{-tA_\lambda} \int_0^t e^{sA_\lambda} f_\lambda(y(s), s)ds $$

$$ = -A_\lambda e^{-tA_\lambda} y_0 - A_\lambda e^{-tA_\lambda} \int_0^t e^{sA_\lambda} f_\lambda(y(s), s)ds $$

$$ + e^{-tA_\lambda} e^{tA_\lambda} f_\lambda(y(t), t) $$

$$ = -A_\lambda y(t) + f_\lambda(y(t), t) $$

$$ = -Ay(t) + f(y(t), t). $$
General Case

Proof: We consider the set

\[\Gamma := \{ y \in C(0, T; \mathcal{W}) : y(0) = y_0, y_{\min} \leq y(t) \leq y_{\max} \ \forall t \in [0, T] \}. \]

We want to apply the Banach’s fixed point theorem to

\[\psi(y)(t) := S_{A\lambda}(t)y_0 + \int_0^t S_{A\lambda}(t-s)f_\lambda(y(s), s)ds. \]
Proof: We consider the set

\[\Gamma := \{ y \in C(0, T; \mathcal{W}) : y(0) = y_0, y_{\text{min}} \leq y(t) \leq y_{\text{max}} \quad \forall t \in [0, T] \}. \]

We want to apply the Banach’s fixed point theorem to

\[\psi(y)(t) := S_{A^\lambda}(t)y_0 + \int_0^t S_{A^\lambda}(t-s)f^\lambda(y(s), s)\,ds. \]
Proof : We consider the set

$$\Gamma := \{ y \in C(0, T; \mathcal{W}) : y(0) = y_0, y_{\text{min}} \leq y(t) \leq y_{\text{max}} \ \forall t \in [0, T] \}. $$

We want to apply the Banach’s fixed point theorem to

$$\psi(y)(t) := S_{A_{\lambda}}(t)y_0 + \int_0^t S_{A_{\lambda}}(t-s)f_{\lambda}(y(s), s)ds.$$
Proof : We consider the set
\[
\Gamma := \{ y \in C(0, T; \mathcal{W}) : y(0) = y_0, y_{\min} \leq y(t) \leq y_{\max} \ \forall t \in [0, T]\}.
\]

We want to apply the Banach’s fixed point theorem to
\[
\psi(y)(t) := S_{A, \lambda}(t)y_0 + \int_0^t S_{A, \lambda}(t - s)f_{\lambda}(y(s), s)ds.
\]
Proof: We consider the set
\[\Gamma := \{ y \in C(0, T; \mathcal{V}) : y(0) = y_0, y_{\text{min}} \leq y(t) \leq y_{\text{max}} \ \forall t \in [0, T] \}. \]

We want to apply the Banach’s fixed point theorem to
\[\psi(y)(t) := S_{A, \lambda}(t)y_0 + \int_0^t S_{A, \lambda}(t-s)f_\lambda(y(s), s)\,ds. \]
Proof: We consider the set

\[\Gamma := \{ y \in C(0, T; \mathcal{W}) : y(0) = y_0, y_{min} \leq y(t) \leq y_{max} \ \forall t \in [0, T] \}. \]

We want to apply the Banach’s fixed point theorem to

\[\psi(y)(t) := S_{A_{\lambda}}(t)y_0 + \int_0^t S_{A_{\lambda}}(t-s)f_{\lambda}(y(s), s)ds. \]
- Let be $y \in \Gamma$ and $0 \leq t \leq T$

$$\psi(y)(t) \leq S_{-A-\lambda}(t)y_0 + \int_0^t S_{-A-\lambda}(t-s)[f(y(s), s) + \lambda y(s)]ds$$

$$\leq S_{-A-\lambda}(t)y_0 + \int_0^t S_{-A-\lambda}(t-s)[\lambda y_{\text{max}} + Ay_{\text{max}}]ds$$

$$\leq S_{-A-\lambda}(t)(y_0 - y_{\text{max}}) + S_{-A-\lambda}(0)y_{\text{max}}$$

Then ψ preserves Γ.
Moreover we can prove that its a contraction, then by the Banach fixed point theorem, we have the result.
- Let be \(y \in \Gamma \) and \(0 \leq t \leq T \)

\[
\psi(y)(t) \leq S_{-A-\lambda}(t)y_0 + \int_0^t S_{-A-\lambda}(t-s)[f(y(s), s) + \lambda y(s)]ds
\]

\[
\leq S_{-A-\lambda}(t)y_0 + \int_0^t S_{-A-\lambda}(t-s)[\lambda y_{max} + Ay_{max}]ds
\]

\[
\leq S_{-A-\lambda}(t)(y_0 - y_{max}) + S_{-A-\lambda}(0)y_{max}
\]

Then \(\psi \) preserves \(\Gamma \).
Moreover we can prove that its a contraction, then by the Banach fixed point theorem, we have the result.
Let $\Omega \subset \mathbb{R}^3$, $T > 0$, $Q_T := (0, T) \times \Omega$. Our system was

$$
\begin{aligned}
\frac{\partial y_1}{\partial t} + d_1 Ay_1 &= a_1 (1 - y_1/k_1)y_1 - (\alpha_{1,2}y_2 + \kappa_{1,3}y_3)y_1 \\
\frac{\partial y_2}{\partial t} + d_2 Ay_2 &= a_2 (1 - y_2/k_2)y_2 - (\alpha_{2,1}y_1 + \kappa_{2,3}y_3)y_2 \\
\frac{\partial y_3}{\partial t} + d_3 Ay_3 &= -a_3 g_3 y_3 + u
\end{aligned}
$$

$$y_i(x, 0) = y_{i,0} \quad \forall \ 1 \leq i \leq 3$$

where A is defined by

$$A : H^1(\Omega) \rightarrow H^1(\Omega)' \quad u \mapsto (\varphi \mapsto \langle Au, \varphi \rangle_{H^1(\Omega)', H^1(\Omega)} = \langle \nabla u, \nabla \varphi \rangle_{L^2(\Omega)}).$$
Let $\Omega \subset \mathbb{R}^3$, $T > 0$, $Q_T := (0, T) \times \Omega$. Our system was

\[
\begin{align*}
\frac{\partial y_1}{\partial t} + d_1 Ay_1 &= a_1(1 - y_1/k_1)y_1 - (\alpha_{1,2}y_2 + \kappa_{1,3}y_3)y_1 \\
\frac{\partial y_2}{\partial t} + d_2 Ay_2 &= a_2(1 - y_2/k_2)y_2 - (\alpha_{2,1}y_1 + \kappa_{2,3}y_3)y_2 \\
\frac{\partial y_3}{\partial t} + d_3 Ay_3 &= -a_3 g_3 y_3 + u
\end{align*}
\]

where A is defined by

\[
A : \quad H^1(\Omega) \rightarrow H^1(\Omega)^{'} \\
u \mapsto (\varphi \mapsto \langle Au, \varphi \rangle_{H^1(\Omega)^{'},H^1(\Omega)} = \langle \nabla u, \nabla \varphi \rangle_{L^2(\Omega)}) \quad . \tag{4}
\]
To simplify the notations, let be $Y = (y_1, y_2, y_3)^\top$ and

$$\begin{cases}
\frac{\partial Y}{\partial t} = D A Y + b(Y) + U \\
y(x, 0) = Y_0
\end{cases} \quad (5)$$

where

$$D = \begin{diagonal}(d_1, d_2, d_3),$$
$$b(Y) = (S + T)(Y)Y,$$
$$S(Y) = \begin{diagonal}(a_1(1 - y_1/k_1), a_2(1 - y_2/k_2), -a_3),$$
$$T(Y) = \begin{diagonal}(-\alpha_1, 2y_2 + \kappa_1, 3y_3), -\alpha_2, 1y_1 + \kappa_2, 3y_3), 0, 0),$$
$$U = (0, 0, u).$$

and the operator A defined by

$$A : H^1(\Omega) \rightarrow H^1(\Omega)^\prime$$
$$u \mapsto (\varphi \mapsto \langle Au, \varphi \rangle_{H^1(\Omega)^\prime, H^1(\Omega)} = \langle \nabla u, \nabla \varphi \rangle_{L^2(\Omega)}). \quad (6)$$

$(L^2(\Omega) = L^2(\Omega)^3, H^1(\Omega) = H^1(\Omega)^3)$
To simplify the notations, let be $Y = (y_1, y_2, y_3)^\top$ and

$$
\begin{cases}
\frac{\partial Y}{\partial t} = DAY + b(Y) + U \\
Y(x, 0) = Y_0
\end{cases}
$$

(5)

where

$$
D = \text{diag}(d_1, d_2, d_3),
$$
$$
b(Y) = (S + T)(Y)Y,
$$
$$
S(Y) = \text{diag}(a_1(1 - y_1/k_1), a_2(1 - y_2/k_2), -a_3),
$$
$$
T(Y) = \text{diag}(-\alpha_{1, 2} y_2 + \kappa_{1, 3} y_3, -\alpha_{2, 1} y_1 + \kappa_{2, 3} y_3, 0),
$$
$$
U = (0, 0, u).
$$

and the the operator A defined by

$$
A : H^1(\Omega) \to H^1(\Omega)',
$$
$$
u \mapsto (\varphi \mapsto \langle Au, \varphi \rangle_{H^1(\Omega)',H^1(\Omega)} = \langle \nabla u, \nabla \varphi \rangle_{L^2(\Omega)}).
$$

(6)
To simplify the notations, let be \(Y = (y_1, y_2, y_3)^\top \) and

\[
\begin{align*}
\frac{\partial Y}{\partial t} &= D A Y + b(Y) + U \\
Y(x, 0) &= Y_0
\end{align*}
\]

(5)

where

\[
D = \text{diag}(d_1, d_2, d_3),
\]
\[
b(Y) = (S + T)(Y)Y,
\]
\[
S(Y) = \text{diag}(a_1(1 - y_1/k_1), a_2(1 - y_2/k_2), -a_3),
\]
\[
T(Y) = \text{diag}(-\alpha_{1,2}y_2 + \kappa_{1,3}y_3, -\alpha_{2,1}y_1 + \kappa_{2,3}y_3, 0),
\]
\[
U = (0, 0, u).
\]

and the the operator \(A \) defined by

\[
A : H^1(\Omega) \rightarrow H^1(\Omega)',
\]
\[
u \mapsto (\varphi \mapsto \langle Au, \varphi \rangle_{H^1(\Omega)', H^1(\Omega)} = \langle \nabla u, \nabla \varphi \rangle_{L^2(\Omega)}).
\]

(6)

\((L^2(\Omega) = L^2(\Omega)^3, H^1(\Omega) = H^1(\Omega)^3))\)
THEOREM (D. et al, 13')

For all $Y_0 \in L^2(\Omega)$ and all $T > 0$, the system (5) has a unique solution in $C(0, T; H^1(\Omega)) \cap C^1(0, T; H^1(\Omega)')$.

Moreover we have

$$0 \leq y_i(t, x) \leq k_i$$

almost for all $x \in Q_T$ and $i \in \{1, 2, 3\}$, where $k_3 = \|u\|_{\infty} + \|u_{3,0}\|_{\infty}$.
Plan

1. Introduction
2. Property of solutions for a reaction-diffusion equation
3. Optimal Control
4. Conclusions and perspectives
We consider the following optimal problem

\[
\inf_{U \in \mathcal{U}_\partial} J(Y, U) \quad (8)
\]

where

\[
\begin{aligned}
J(Y, U) &= \frac{1}{2} \int_{Q_T} (N_1 y^2_1(x, t) + Nu^2(x, t)) \, dt \, dx \\
&\quad + \int_{\Omega} (M_1 y^2_1(x, T) + M_3 y^2_3(x, T)) \, dx \to \inf, \\
\frac{\partial Y}{\partial t} + D A Y &= b(Y) + U \text{ in } Q_T, \\
Y(0, x) &= Y_0 \text{ in } \Omega, \\
U \in \mathcal{U}_\partial &= \{(u_1, u_2, u_3) \in L^2(Q_T) : u_1 = u_2 = 0, 0 \leq u_3 \leq u_{max}\}.
\end{aligned}
\quad (9)
\]
We consider the following optimal problem

\[
\inf_{U \in U_\partial} J(Y, U)
\]

(8)

where

\[
J(Y, U) = \frac{1}{2} \int_{Q_T} \left(N_1 y_1^2(x, t) + Nu^2(x, t) \right) dt dx
\]

\[
+ \int_{\Omega} \left(M_1 y_1^2(x, T) + M_3 y_3^2(x, T) \right) dx \to \inf,
\]

\[
\frac{\partial Y}{\partial t} + D A Y = b(Y) + U \text{ in } Q_T,
\]

\[
Y(0, x) = Y_0 \text{ in } \Omega,
\]

\[
U \in U_\partial = \left\{ (u_1, u_2, u_3) \in L^2(Q_T) : u_1 = u_2 = 0, 0 \leq u_3 \leq u_{\text{max}} \right\}.
\]

(9)
THEOREM (D et al, 13’)

There exists a solution $(\hat{Y}, \hat{U}) \in \mathcal{W}(0, T) \times L^2(Q_T)^3$ to the problem (8), where $\mathcal{W}(0, T) = \{ y \in L^2(0, T; H^1(\Omega)); \frac{\partial y}{\partial t} \in L^2(0, T; H^1(\Omega)') \}$.
Plan

1 introduction
2 Property of solutions for a reaction-diffusion equation
3 Optimal Control
4 Conclusions and perspectives
Conclusion: we have existence and uniqueness of a solution of our system and existence of a minimum of our functional.

Perspectives:

1. Stability and convergence of a numerical scheme for this problem
2. Boundary control
3. A general study with many medicaments and cells
4. Try the model with clinical data
Conclusion: we have existence and uniqueness of a solution of our system and existence of a minimum of our functional.

Perspectives:

1. Stability and convergence of a numerical scheme for this problem
2. Boundary control
3. A general study with many medicaments and cells
4. Try the model with clinical data
Conclusion: we have existence and uniqueness of a solution of our system and existence of a minimum of our functional.

Perspectives:

1. stability and convergence of a numerical scheme for this problem
2. boundary control
3. a general study with many medicaments and cells
4. try the model with clinical data
Conclusion: we have existence and uniqueness of a solution of our system and existence of a minimum of our functional.

Perspectives:

1. Stability and convergence of a numerical scheme for this problem
2. Boundary control
3. A general study with many medicaments and cells
4. Try the model with clinical data
Perspectives

Conclusion: we have existence and uniqueness of a solution of our system and existence of a minimum of our functional.

Perspectives:

1. stability and convergence of a numerical scheme for this problem
2. boundary control
3. a general study with many medicaments and cells
4. try the model with clinical data
References

Thank you for your attention 😊